Archives(2016-2019)

発表次第(22 May. 2019, No. 1491):

 

1. KANO Shuto (charged in Dr. Suzuki)

Wang, Z.M. et al. (2017) SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Science of the Total Environment. 603-604, p. 616-626.

http://dx.doi.org/10.1016/j.scitotenv.2017.06.047

 

2. KITAMI Takumi

???

 

3. MACHIDA Kazuki (M1)

微小地震が発生しやすい地域に関する解析と考察 ー和歌山県の例ー (Analysis and Consideration about Non-volcanic Microseismic Events: an example of Wakayama Prefecture)

 

Kato, A. et al. (2014) Non-volcanic seismic swarm and fluid transportation driven by subduction of the Philippine Sea slab beneath the Kii Peninsula, Japan. Earth, Planets and Space, 66, p.86_1-86_8.

http://dx.doi.org/10.1186/1880-5981-66-86

 

Maeda, S. et al. (2018) Complex microseismic activity and depth-dependent stress field changes in Wakayama, southwestern Japan. Earth, Planets and Space, 70:21.

https://doi.org/10.1186/s40623-018-0788-6

 

4. TETSUKA Hiroshi (D3)

Where Tsunami Earthquakes Can Occur?

 

 

======================================

発表次第(16 May. 2019, No. 1490):

 

1. Arisa TAKASHIMA (M2)

浮遊性有孔虫殻を用いた海洋炭酸イオン濃度に関する研究.

Estimation of carbonate ionic level in seawater from the wall of planktic foraminifers.

 

Osborne, E.B. et al. (2016) Calcification of the planktonic foraminifera Globigerina

bulloides and carbonate ion concentration: Results from the Santa Barbara Basin.

Paleoceanography, 31, 1083–1102.

doi:10.1002/2016PA002933.

 

Iwasaki, S. et al. (2015) Observation of the dissolution processof Globigerina bulloides tests (plankticforaminifera) by X-ray microcomputed tomography.  Paleoceanography, 30, 317–331.

doi:10.1002/2014PA002639.

 

2. Jun ARIMOTO (D3)

大規模環境変動と生物への影響.

Warming up, turning sour, losing breath.

===============================================

発表次第(7 Feb. 2019, No. 1488):

 

1. Yuto FUJIWARA  (B3) [Charge in Prof. KAIHO]

Schmidt, A., et al., (2016) Selective environmental stress from Sulphur emitted by continental flood basalt eruptions. Nature Geoscience,  9, 77–82.

doi.org/10.1038/ngeo2588

 

2. Hiromu TAKASAWA (B3) [Charge in Dr. TAKAYANAGI]

Qin, B., et al. (2018) Deep-Water Carbonate Ion Concentrations in the Western Tropical Pacific Since the Mid-Pleistocene: A Major Perturbation During the Mid-Brunhes. Journal of Geophysical Research: Oceans, 123, 6876–6892.

doi: 10.1029/2018JC014084

 

3. Hiroshi FUJIOKA (D1)

腕足動物化石の同位体組成に対する続成変化に関する研究と今後の課題

Studies of diagenetic alteration for isotopic compositions of fossil brachiopod shells and challenges for the future

 

4. Sato KUWABARA (D2)

地質 からみた斜面崩壊 を起こしやすい 場所 の予測

Prediction of landslide from the viewpoint of geology

 

==========================================

発表次第(31 Jan. 2019, No. 1487):

 

1. Nana WATANABE (B3) [Charge in Dr. TAKASHIMA]

Clarksona, M. O., et al. (2018) Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. PNAS, 115, 2918–2923.

doi.org/10.1073/PNAS.1715278115

 

2. Wataru NAKAMURA (B3) [Charge in Dr. KUROYANAGI]

Cai, W., et al. (2018) Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201–206.

doi.org/10.1038/s41586-018-0776-9

 

3. Masakazu YASHIRO (M1)

地震サイクルのシミュレーョンと余効すべり及び粘弾性緩和の逆解析を用いたアセノスフェの研究

The study of asthenosphere using earthquake cycle simulation and inversion of the combination after-slip and viscoelastic relaxation

[1] Qiu, Q., Moore, J. D. P., Barbot, S., Feng, L., & Hill, E., 2018, Transient viscosity in the Sumatran mantle wedge from a decade of geodetic observations. Nature Communications, 9, 995.

[2] Barbot, S., 2018, Asthenosphere flow modulated by Megathrust earthquake cycles. Geophys. Res. Lett., 45, 6018–6031.

 

4. Shusuke OKAWARA (D3)

白亜紀の海洋深層循環と気候

Deep-ocean circulation and climate during the Cretaceous

 

[Abstract]

 

発表次第(10 Jan. 2019, No. 1486):

 

1. Haruna SUGAZAWA (B3) [Charge in Prof. NISHI]

Hines, B. R. et al. (2017) Reduction of oceanic temperature gradients in the early Eocene Southwest Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol., 475, 41-54.

doi.org/10.1016/j.palaeo.2017.02.037

 

2. Natsumi SEKI (B3) [Charge in Dr. SUZUKI]

Zhao, X. et al.  (2018) Stepwise oxygenation of early Cambrian controls early metazoan diversification. Palaeogeogr. Palaeoclimatol. Palaeoecol., 504, 86-103. doi.org/10.1016/j.palaeo.2018.05.009

 

3. Takuya NISHIO (M1)

生物源炭酸塩の微量金属元素濃度比を用いた海洋炭酸系の復元とその課題

Reconstruction of seawater carbonate system by trace element concentrations of biogenic carbonates, and its issues

[1] Nina, K., Gerald, L., Silke, T., Lennart, J. N., Gert-J. R., Jelle, B., 2016, Exploring foraminiferal Sr/Ca as a new carbonate system proxy. Geochim. Cosmochim. Acta, 202, 374­—386

[2] Mayuri, I., Takashi, N., Yasuaki, T., Atsushi, S., Yusuke, Y., Hodaka, K., Kazuhiko, S., Nikolaus, G., 2018, A simple role of coral-algal symbiosis in coral calcification based on multiple geochemical tracers.Geochim. Cosmochim. Acta, 235, 76—88

[3]渡邊誠一郎,檜山哲哉,安成哲三 編(Seiichiro, W., Tetsuya, H., Tetsuzo, Y., ed.),2008,新しい地球学(The New Earth Sciences),名古屋大学出版会(Univ. Nagoya      Press),343p.

 

4. Yuki NOSE (M1)

断層帯におけるグラファイトに関する研究

The Study of Graphite in some of fault zones

[1] Oohashi, K., Hirose, T., Kobayashi, K. and Shimamoto, T., 2012, The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. Jour. Struct. Geol., 38, 39–50.

[2] Oohashi, K., Hirose, T. and Shimamoto, T., 2011, Shear-induced graphitization of carbonaceous materials during seismic fault motion: Experiments and possible implications for fault mechanics. Jour. Struct. Geol., 33, 1122–1134.

[3] Kuo, L-W., Huang, J-R., Fang, J-N., Si, J., Li, H. and Song, S-R., 2018, Carbonaceous materials in the fault zone of the Longmenshan fault belt : 1. Signatures within the deep Wenchuan earthquake falut zone and their implications. Jour. Minerals 2018, 8, 385.

[4] Kuo, L-W., Huang, J-R., Fang, J-N., Si, J., Song, S-R., Li, H. and Yeh, E-C., 2018, Carbonaceous materials in the fault zone of the Longmenshan fault belt : 2. Characterization of fault gouge from deep drilling and implications for fault maturity. Jour. Minerals 2018, 8, 393.

 

[Abstract]

 

発表次第(20 Dec. 2018, No. 1485):

 

1. Prof. Tokiyuki SATO (Akita University)

石灰質ナンノ化石研究の40年 ー東北大学への期待ー

 

 

発表次第(13 Dec. 2018, No. 1484):

 

1. Takumi KITAMI (B3) [Charge in Dr. YAMADA]

Hopley, P. J. et al. (2018) Orbital precession modulates interannual rainfall variability, as recorded in an Early Pleistocene speleothem. Geology, 46, 731-734.

doi: org/10.1130/G45019.1

 

2.  Koki KAWANAMI (B3) [Charge in Prof. IRYU]

Swart, P. K. & Oehlert, A. M. (2018) Revised interpretations of C and O patterns in carbonate rocks resulting from meteoric diagenesis. Sedimentary Geology, 364,14–23. doi: org/10.1016/j.sedgeo.2017.12.005

 

3.  Satoshi OKA (M1)

下部白亜系の年代値に関する研究

The studies on the numerical age of Lower Cretaceous

1) Aguirre-Urreta, B. et al. (2017) A high precision U-Pb radioisotopic age for the Agrio Formation, Neuquen Basin, Argentina: Implications for the chronology of Hauterivian Stage. Cretaceous Research, 75, 193-204.

2) Ghirardi, J. et al. (2014) Multi-proxy orbital chronology in the aftermath of the Aptian Oceanic Anoxic Event 1a: Palaeoceanographic aftermath of the Aptian Oceanic Anoxic Event 1a: Palaeoceanographic implications (Serre Chaitieusection, Vocontian Basin, SE France). Newsletters on Stratigraphy, 47/3, 247-262.

 

4. Kosuke TAKAHASHI (M1)

日本海における放散虫研究

Radiolarians of JAPAN SEA

1) Isao MOTOYAMA, Toshiyuki KURIHARA and Takuya ITAKI (2017) Neogene biosiliceous sedimentary sequence and radiolarian biostratigraphyin the Tainai area, Niigata Prefecture. Science reports of Niigata University (Geology), 32 (Supplement), 91–102.

2) Kenji M. Matsuzaki, Takuya Itaki, Ryuji Tada and Shin-ichi Kamikuri (2018)Paleoceanographic history of the Japan Sea over the last 9.5 million years inferred from radiolarian assemblages (IODP Expedition 346 Sites U1425 and U1430). Progress in Earth and Planetary Science, 5, 54.(https://doi.org/10.1186/s40645-018-0204-7)

 

5. Naoto KANEKO (D1)

火山地形の熱力学的考察

Thermodynamic consideration on volcanic landforms

 

[Abstract]

 

発表次第(29 Nov. 2018, No. 1483):

 

1. Akimasa ISHIGAKI (M1)

カソードルミネッセンスの炭酸塩鉱物への応用

Application of  cathodoluminescence (CL) to observe carbonate rocks

1) Pszonka, J., Wendorff, M., 2016, Carbonate cements and grains in submarine fan sandstones―the Cergowa Beds (Oligocene, Carpathians of Poland) recorded by cathodoluminescence. Int. J. Earth Sci. (Geol. Rundsch.), 106, 269–282, doi: 10.1007/s00531-016-1318-z

2) Vincent, B., Waters, J., Witkowski, F., Daniau, G., Oxtoby, N., Crowley, S., Ellam, R., 2018, Diagenesis of Rotliegend sandstone reservoirs (offshore Netherlands): The origin and impact of dolomite cements. Sediment. Geol., 373, 272-291, doi: 10.1016/j.sedgeo.2018.06.012

 

2.  Naoki SEKINE (M1)

オーストラリア西岸沖における過去500万年間の海洋環境復元の最新研究

Latest researches on reconstruction of paleoceanographic environment off the west coast of Australia during the last 5 Myrs

1) David De Vleeschouwer, Gerald Auer, Rebecca Smith, Kara Bogus, Beth Christensen, Jeroen Groeneveld, Benjamin Petrick, Jorijntje Henderiks, Isla S. Castañeda, Evan O’Brien, Maret Ellinghausena, Stephen J. Gallagheri, Craig S. Fulthorpej, Heiko Pälike, 2018, The amplifying effect of Indonesian Throughflow heat transport on Late Pliocene Southern Hemisphere climate cooling. Earth and Planetary Science Letters, 500, 15-27.

https://doi.org/10.1016/j.epsl.2018.07.035

2)  Matej Lipar, John A. Webb, Matthew L. Cupper, Ningsheng Wang, 2017, Aeolianite, calcrete/microbialite and karst in southwestern Australia as indicators of Middle to Late Quaternary palaeoclimates. Palaeoceanography, Palaeoclimatology, Palaeoecology, 470, 11-29.

https://doi.org/10.1016/j.palaeo.2016.12.019

 

3. Yuho KUMAGAI (D3)

化石サンゴ骨格および石灰質深海底堆積物内の磁性鉱物の磁気検出と強磁性共鳴の特徴

Magnetic detection and ferromagnetic resonance characterization of magnetic minerals in fossil coral skeletons and calcareous deep sea sediment

 

4. Sara Emanuel (D1)

NANNOFOSSIL ACCUMULATION RATE AND COCCOLITH SIZE DISTRIBUTION

1) Imai et al. (2015) Evidence for eutrophication in the northwest Pacific and eastern Indian oceans during the Miocene to Pleistocene based on the nannofossil accumulation rate, Discoaster abundance and coccolith size distribution of Reticulofenestra. Marine Micropaleontology 116(2015) 15-27

2) Álvarez et al. (2009) Long-term upwelling evolution in tropical and equatorial Pacific during the last 800 kyr as revealed by coccolithophore assemblages. Geobios 43 (2010) 123-130

 

[Abstract]

 

発表次第(22 Nov. 2018, No. 1482):

 

1. Tomohisa KAMIYA (B3) [Charge in Dr. SASAKI]

Harvey, T. H. P. and Butterfield, N. J. (2017) Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos. Nature ECOLOGY & EVOLUTION 1, 0022. doi: 10.1038/s41559-016-0022

 

2.  Akira  IKEDA (B3) [Charge in Prof. KAIHO]

Luo, G. et al. (in Press, Available online 22 March 2018) Lipid biomarkers for the reconstruction of deep-time environmental conditions. Earth-Science Reviews. doi: 10.1016/j.earscirev.2018.03.005

 

3. Yusuke Ogata (M1)

津波堆積物研究に多変量解析を用いる意義

Significance to use a multivariate analysis for tsunami-deposit researches

1) Pham, D. T. et al. (2017) Elemental and mineralogical analysis of marine and coastal sedimentsfrom Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits. Marine Geology, 385, 274–292.

2) Nakamura, K. et al. (2016) Extraction of heavy metals characteristics of the 2011 Tohoku tsunami deposits using multiple classification analysis. Chemosphere, 144, 1241–1248.

 

4. Andros Cruz (M2)

Neodymium Isotopes in Foraminifera.

 

5. Masanori KIDO (D3)

地球内部の流体の地球物理的探査

Geophysical exploration of fluids inside the Earth

 

[Abstract]

 

発表次第(8 Nov. 2018, No. 1481):

 

1. Shuto KANOU (B3) [Charge in Dr. ASAMI]

Liu, Y. et al.  (2017) Recent enhancement of central Pacific El Nino variability relative to last eight centuries. NATURE COMMUNICATIONS, 8, 15386. doi: 10.1038/ncomms15386

 

2. RAMAN KUMAR BISWAS (D2)

Collapse and recovery of land vegetation during the Permian-Triassic transition

 

[Abstract]

 

発表次第(25 Oct. 2018, No. 1480):

 

1. Ryohei ENDO (B3) [Charge in Dr. MUTO]

Jamtveit, B. et al.  (2018) Earthquake-induced transformation of the lower crust. Nature, 556, 487-491. doi: 10.1038/s41586-018-0045-y

 

2.  Rikuto HONDO  (B4) [Charge in Dr. MUTO]

Karato and Barbot (2018) Dynamics of fault motion and the origin of contrasting tectonic style between Earth and Venus. Nature, scientific reports.  doi: 10.1038/s41598-018-30174-6

 

3. Yoshihiro FUKUSHIMA (M2)

帯磁率異方性における問題点と、ファブリックテンソルの帯磁率異方性への応用

Problems in Anisotropy of Magnetic Susceptibility (AMS) and Fabric Tensor’s Applications in AMS

1) Kon, S. et al (2017) Inverse magnetic fabric in unconsolidated sandy event deposits in Kiritappu Marsh, Hokkaido, Japan. Sedimentary Geology, 349, 112-119.

2) Fu, P. et al (2015) Relationship between void- and contact normal-based fabric tensors for 2D idealized granular materials. International Journal of Solids and Structures, 63, 68-81.

 

4. Yoshitaka HASHIMOTO (M2)

Relationship between fractal dimension and distance and its application

1) Muto, J., Nakatani, T., Nishikawa, O., Nagahama, H. (2015) Fractal particle size distribution of pulverized fault rocks as a function of distance from the fault core. Geophysical Research Letters. 42, 3811-3819.

2) Adib, Ahmad., Afzal, Peyman., Ilani, Shapour Mirzaei., Aliyari, Farhang., (2017) Determination of the relationship between major fault and zinc mineralization using fractal modeling in the Behabad fault zone, central Iran. Journal of African Earth Sciences. 134, 309-319.

 

5. Ha Thuy Thi Nhu (D2)

Conodont biostratigraphy, carbonate carbon isotope profile and event at Kamura, Kyushu, Japan

 

[Abstract]

 

発表次第(18 Oct. 2018, No. 1479):

 

1. Takahiro SHINOHARA (M2)

断層(亀裂)面形状の形成及び発達と、その断層力学およびエネルギー工学への応用

Formation and Alteration of Fault (Fracture) Surface Roughness and its Applications in Fault Mechanics and Energy Engineering

1) Intermittency and roughening in the failure of brittle heterogeneous materials, Bonamy (2009), J. Phys. D: Appl. Phys.

2) Low Self-Affine Exponents of Fractured Glass Ceramics Surfaces, Ponson et al. (2006), PHYSICAL REVIEWS

3) How microfracture roughness can be used to distinguish between exhumed cracks and in-situ flow paths in shales, Pluymakers et al. (2016), Journal of Structural Geology

4) Constant dimensionality of fault roughness from the scale of micro-fractures to the scale of continents, Renard et al. (2013), JGR

5) Evolution of fault-surface roughness with slip, Sagy et al. (2007), Geology

6) Evolution of slip surface roughness through shear, Davidesko et al. (2014), GRL

7) Constraints from fault roughness on the scale-dependent strength of rocks, Brodsky et al. (2015), Geology

8) The minimum scale of grooving on faults, Candela and Brodsky (2016), Geology

9) Dynamic weakening by nanoscale smoothing during high=velocity fault slip, Chen et al. (2013), Geology

 

[Abstract]

 

発表次第(26 July 2018, No. 1478):

 

1. Kazuma OIKAWA (B4) [Charge in Dr. YAMADA]

Cleary, D. M. et al. (2017) Evidence of long-term NAO influence on East-Central Europe winter precipitation from a guano-derived δ15N record. Scientific Reports volume 7, Article number: 14095. doi: 10.1038/s41598-017-14488-5

 

2. Takuhito KAWANO (M2)

後期白亜紀の浮遊性有孔虫を用いた古海洋環境復元(Late Cretaceous paleo-oceanographic environment based on planktic foraminiferal assemblages)
1) Darabi, G. et al. (2018) Planktonic foraminifera and sea-level changes in the upper Cretaceous of the Gurpi Formation, Lorestan basin, SW Iran. Journal of African Earth Sciences, 138, 201-218.

2) MacLeod, K. G. et al. (2013) A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera. Geology, 41, 1083-1086.

 

3. Yuji YAMAGUCHI (M2)

嶺岡隆起帯の構造発達史の解明

1) Ichiyama, Y. et al. (2017) Hisatoshi Ito, Natsumi Hokanishi, Akihiro Tamura, ShojiAraiPlutonic rocks in the Mineoka–Setogawa ophiolitic mélange, central Japan: Fragments of middle to lower crust of the Izu–Bonin–Mariana Arc? Lithos, 282-283, 420-430.

2)  Wu, L. and Kravchinsky, V. A. (2014) Derivation of paleolongitude from the geometric parametrization of apparent polar wander path: Implication for absolute plate motion reconstruction. Geophys. Res. Lett., 41, 4503–4511.

 

4. IRWAN (D3)

Variability of Heat Transport of Indonesian Troughflow and Its Impact to Global Climate Change Over the Last 5 Ma.

 

[Abstract]

 

発表次第(12 July 2018, No. 1477):

 

1. Taro HINO (B4) [Charge in Prof. NISHI]

Schiebel, R. et al. (2017) Modern planktic foraminifers in the high-latitude ocean. Marine Micropaleontology, 136, 1-13. doi: 10.1016/j.marmicro.2017.08.004

 

2. Kazuyuki YOSHIDA (B4) [Charge in Dr. TAKASHIMA]

Stéphan Bodin et al. (2015) Large igneous provinces and organic carbon burial: Contents on global temperature and weathering during the Early Cretaceous. Global and Planetary Change, 133, 238–253.

doi: 10.1016/j.gloplacha.2015.09.001

 

3. Shohei IWAI (M2)

巨礫を動かした津波・高波イベントの識別方法(Hydrodynamic equations to identify extreme wave events which have transported boulders)

1) Majid Shah-Hosseini, Amr Saleem, Abdel-Moneim A. Mahmoud (2016)

Coastal boulder deposits atteinding to large wave impacts on the Mediterranean coast of Egypt. Nat Hazards, 83: 849-865.

2) Drasti Gandhi, K.A. Chavare, S.P. Prizomwala, Nilesh Bhatt, N.Y. Bhatt (2017)Testing the numerical models for boulder transport through high energy marine wave event: An example from southern Saurashtra. Western India. Quaternary International, 444: 209-216.

 

[Abstract]

 

発表次第(5 July 2018, No. 1476):

 

1. Mitsuhiro HIRANO (B4) [Charge in Dr. SUZUKI]

Shan Chang, Qinglai Feng, Sébastien Clausen, Lei Zhang (2017) Sponge spicules from the lower Cambrian in the Yanjiahe Formation, South China: The earliest biomineralizing sponge record. Palaeogeogr. Palaeoclimatol. Palaeoecol., 474, 36-44. doi: 10.1016/j.palaeo.2016.06.032

 

2. Haruka KUSAKAWA (M2)

Changbaishan volcano and B-Tm tephra

1)Haiquan Wei, Guoming Liu, James Gill (2013) Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions. Bull. Volcanol, 75, 706. doi: 10.1007/s00445-013-0706-5

2)Danielle McLean, Paul G. Albert, Takeshi Nakagawa, Richard A. Staff, Takehiko

Suzuki, Suigetsu Project Members, Victoria C. Smith (2016) Identification of the Changbaishan ‘Millennium’ (B-Tm) eruption deposit in the Lake Suigetsu (SG06) sedimentary archive, Japan: Syncronisation of hemispheric-wide paleoclimate archives. Quaternary Science Reviews, 150, 301-307.

 

3. Shota SUZUKI (M2)

琉球列島の構造地質発達史復元(Structural geological development history of the Ryukyu arc)

1)Liu, Bo, et al. "The geological nature and geodynamics of the Okinawa Trough, Western Pacific." Geological Journal 51 (2016): 416-428.

2)Zang, Y. B., et al. "Similarity and differentiation between the East China Sea Shelf Basin and Cenozoic basins in the northeast South China Sea." Geological Journal 51 (2016): 304-317.

4. Daichi IWATA (D2)

情報縮約のデータ解析:行列の分解による特徴抽出(Data analysis of dimension reduction: feature extraction by matrix decomposition)

 

[Abstract]

 

発表次第(28 June 2018, No. 1475):

 

1. Hiroaki YOKOYAMA (B4) [Charge in Prof. IRYU]

Caslle. L. A. et al. (2018) Micro- and nanostructures reflect the degree of diagenetic alteration in modern and fossil brachiopod shell calcite: a multi-analytical screening approach (CL, FE-SEM, AFM, EBSD). Palaeogeogr. Palaeoclimatol. Palaeoecol., 502, 13-30.

 doi: 10.1016/j.palaeo.2018.03.011

 

2. Masaaki IWASAKI (M2)

岩石の挙動における間隙流体と透水率、間隙率(Pore fluid, permeability and porosity in rock behavior)

1)J. Behnsen, D. R. Faulkner (2011) Water and argon permeability of phyllosilicate powders under medium to high pressure. Journal of Geophysical Research: Solid Earth, Volume116, IssueB12 | DOI : 10.1029/2011JB008600 :

2)D. R. Faulkner, C. Sanchez‐Roa C. Boulton, S. A. M. den Hartog (2017) Pore Fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature. Journal of Geophysical Research: Solid Earth, Volume123, Issue1 | DOI : 10.1002/2017JB015130

 

3. Kouhei SEKI (M2)

ヒト科頭蓋骨の幾何学的形態測定(Geometric morphometric analysis of hominid skulls)

1)Schroeder, Lauren, et al. (2017) Skull diversity in the Homo lineage and the relative position of Homo naledi. Journal of human evolution. 104, 124-135.

2)Pereira‐Pedro, Ana Sofia, Michael Masters, and Emiliano Bruner (2017) Shape analysis of spatial relationships between orbito‐ocular and endocranial structures in modern humans and fossil hominids. Journal of anatomy. 231.6,  947-960.

4. Shun ARAI (D2)

脆性-塑性遷移域における岩石の変形機構

 

[Abstract]

 

発表次第(21 June 2018, No. 1474):

 

1. Taiki YAMAGUCHI (B4) [Charge in Dr. SASAKI]

Yang, J. et al. (2018) Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nature Communications, 9,470.

 doi: 10.1038/s41467-017-02754-z

 

2. Kiriha TANAKA (M2)

自然放射線の照射効果を利用した年代測定法の確立に向けた研究

1)Yang, H. L., Chen, J., Yao, L., Liu, C. R., Shimamoto, T., and Jobe, J. A. T., 2018, Resetting of OSL/TL/ESR signals by frictional heating in experimentally sheared quartz gouge at seismic slip rates, Quaternary Geochronology. Doi : 10.1016/j.quageo.2018.05.005

2)Bateman, M. D., Swift, D. A., Piotrowski, J. A., Rhodes, E. J., and Damsgaard, A., 2018, Can glacial shearing of sediment reset the signal used for luminescence dating? Geomorphology,

306, 90-101. Doi : 10.1016/j.geomorph.2018.01.017

 

3. Motoyasu YANO (M2)

ドロマイト化作用とその産状

(Dolomitization and the geometry of the dolomite)

1)Yamamoto, K., Ottinger, G., Al Zinati, O., Takayanagi, H., Yamamoto, K., & Iryu, Y. (2018). Geochemical, petrographical, and petrophysical evaluations of a heterogeneous, stratiform dolomite from a Barremian oil field, offshore Abu Dhabi (United Arab Emirates). AAPG Bulletin, 102(1), 129-152.

2)Kordi, M., Morad, S., Turner, B., & Salem, A. M. (2017). Sequence stratigraphic controls on formation of dolomite: Insights from the Carboniferous Um Bogma Formation, Sinai-Egypt. Journal of Petroleum Science and Engineering, 149, 531-539.

4. Jun ARIMOTO (D2)

気候変動と炭素循環:過去,現在,そして未来

(Climate change and carbon cycle)

 

[Abstract]

 

発表次第(14 June 2018, No. 1473):

 

1. Arisa TAKASHIMA (B4) [Charge in Dr. KUROYANAGI]

Davis, C. V. et al. (2017) Ocean acidification compromises a planktic calcifier with implicationsor global carbon cycling. Scientific Reports, 7, 2225.  doi: 10.1038/s41598-017-01530-9

 

2. Mio TEZUKA (M1)

白亜紀―古第三紀境界(K/T境界)の古環境変動

(Paleoenvironmental changes around the Cretaceous-Paleocene boundary)

1)Schoepfer S. D., Tobin T. S., Witts J. D., Newton R. J. (2017) Intermittent euxinia in the high latitude James Ross Basin during the latest Cretaceous and earliest Paleocene. Paleogeography, Paleoclimatology, Paleoecology, 477, 40-54.

2)Fantasia A., Adatte T., Spangenberg J. E., Front E. (2016) Paleoenvironmental changes associated with Deccan volcanism, examples from terrestrial deposits from central India. Paleogeography, Paleoclimatology, Paleoecology, 441, 165-180.

 

3. Taiga INOUE (M2)

南海トラフ沿岸の古津波堆積物調査

 

[Abstract]

 

発表次第(7 June 2018, No. 1472):

 

1. Kosei SAKIYAMA (B4) [Charge in Dr. YAMADA]

Green, D. R et al. (2018) Determinants of blood water δ18O variation in a population of experimental sheep: Implications for paleoclimate reconstruction. Chemical Geology, 485, 32-43.  doi: 10.1016/j.chemgeo.2018.03.034

 

2. Kazuki MACHIDA (B4) [Charge in Prof. KAIHO]

Racki, G. et al. (2018) Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?. GEOLOGY, 46 (6), 543–546.  doi: 10.1130/G40233.1

 

3. Hokuto HIGAKI (M1)

津波堆積物を用いた波源断層モデルの再検討(Re-estimated fault model from tsunami deposit)

1) Namegaya Y. and Satake K. (2014) Reexamination of the A.D. 869 Jogan earthquake size from tsunami deposit distribution, simulated flow depth, and velocity. Geophysical Research Letters, 41, 2297–2303.

2) Ioki K. and Tanioka Y. (2016) Re-estimated fault model of 17th century great earthquake off Hokkaido using tsunami deposit data. Earth Planet. Sci. Lett., 433, 133–138.

 

4. Haruka RIGAWA (M2)

フラクタル解析を用いた構造地質学的研究(Structural geology studies using fractal analysis)

 

[Abstract]

 

発表次第(31 May 2018, No. 1471):

 

1. Daichi KAMEYAMA (B4) [Charge in Dr. YAMADA]

Burgener, L. et al. (2016) Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30 S) revealed by clumped isotope thermometry. Earth and Planetary Science Letters 441, 188-199.   doi: 10.1016/j.epsl.2016.02.033

 

2. Toshiaki USAMI (B4) [Charge in Dr. TAKAYANAGI]

Uemura, R. et al. (2018) Asynchrony between Antarctic temperature and CO2 associated with obliquity over the past 720,000 years. Nature Communications 9, 961.   doi: 10.1038/s41467-018-03328-3

 

3. Takahiro SUKEGAWA (M1)

炭素同位体比層序を用いた暁新世-始新世温暖化極大事変の研究(Studies on the Paleocene-Eocene thermal maximum using carbon isotope stratigraphy)

1) Qinghai Zhang, Ines Wendler, Xiaoxia Xu, Helmut Willems, Lin Ding (2017)

Structure and magnitude of the carbon isotope excursion during the Paleocene–Eocene thermal maximum. Gondwana Research 46, 114–123.

2) Juan Li, Xiumian Hua, Eduardo Garzanti, Marcelle BouDagher-Fadel (2017)

Shallow-water carbonate responses to the Paleocene–Eocene thermal maximum

in the Tethyan Himalaya (southern Tibet): Tectonic and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 466, 153–165.

 

4. Takashi ISHIZAWA (D3)

津波堆積物の高精度堆積年代推定(High-precision dating of tsunami deposit

 

[Abstract]

 

発表次第(24 May 2018, No. 1470):

 

1. Kosuke YOSHII (M1)

Mg・Ca同位体比を用いた海水ドロマイト化作用の検討

Study on marine dolomitization by using Mg · Ca isotope.

1. Clara L. Blattler, Nathaniel R. Miller, John A. Higgins, 2015. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth planet. Sci. Lett. 419,32-42.

2. J.A. Higgins, C.L. Blatter, E.A. Lundstrom, D.P. Santiago-Ramos, A.A. Akhtar, A-S. Cruger Ahm, O.Bialik, C. Holmden, H. Bradbury, S.T. Murray, P.K. Swart, 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim. Cosmochim. Acta 220, 512-534.

 

2. Hiroaki OTOBE (M2)

後期白亜紀における層序学的研究について

1. Sherif Farouk et al. (2018) Study of stratigraphy during Late Cretaceous

An integrated study of upper Campanian-lower Maastrichtian carbon isotopes and calcareous plankton biostratigraphy of the Kurdistan Region, northeastern Iraq. Cretaceous Research, 82, 64-80.

2. Nadia Sabatino et al. (2018) A new high-resolution carbon-isotope stratigraphy for the Campanian (Bottaccione section): Its implications for global correlation, ocean circulation, and astrochronology. Palaeogeography, Palaeoclimatology, Palaeoecology 489, 29–39.

 

3. ATHURUPANA, Bhathiya Madhuta Bandara (D3)

Quantitative Fabric Analysis: Application for Naturally Deformed Rocks.

 

[Abstract]

 

発表次第(17 May 2018, No. 1469):

 

1. Kenta MINAMIDATE (B4) [Charge in Dr. ASAMI]

DeCarlo, T. M. et al. (2015) Coral macrobioerosion is accelerated by ocean acidification and nutrientsearthquake. Geology 43, 7-10.

doi: 10.1130/G36147.1

 

2. Sayaka OKUHIRA (M2)

化⽯サンゴ⾻格を使⽤した中期完新世の古環境復元

1. Kajita, H., Yamazaki, A., Watanabe, T., WU, C., Shen, C. and Watanabe, T. (2017) Holocene sea surface temperature variations recorded in corals from Kikai Island, Japan. Geochem. J. 51, e9-e14.

2. Seki, A., Yokoyama, Y., Suzuki, A., Kawakubo, Y., Okai, T., Miyairi, Y., Matsuzaki, H., Namizaki, N. and Kan, H. (2012) Mid-Holocene sea-surface reconstruction using fossil corals from Kume Island, Ryukyu, Japan. Geochem. J. 46, e27-e32.

 

3. Sando SAWA (M2)

Water in the Moon

 

[Abstract]

 

発表次第(26 April 2018, No. 1468):

 

1. Tatsuya TAKEI (B4) [Charge in Dr. Osozawa]

Kato,S.et al.(2016) New geological and palaeontological age constraint for the gorilla–human lineage split. Nature, 530, 215-218.

 

2. Ryosuke FUJITA (M1)

宮古・八重山諸島の古津波履歴

Araoka et al. (2013) Tsunami recurrence revealed by Porites coral boulders in the southern Ryukyu Islands, Japan, Geol., 41, 919–922.

Ando et al. (2017) Source of tsunami along the southernmost Ryukyu trench inferred from tsunami stratigraphy, Tectonophysics, 722, 265–276.

 

[Abstract]

 

発表次第(19 April 2018, No. 1467):

 

1. Rikuto HONDO (B4) [Charge in Prof. Kaiho]

Tashiro,T.et al.(2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature, 549, 516-518.

 

2. Kazuma OIKAWA (B4) [Charge in Dr. Takayanagi]

Dawei, Li., Meixun, Zhao., Jun, Tian. (2017) Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian Winter monsoon records during the last 2.8 Myr. Quaternary Science Reviews, 172, 72–82.

 

3. Raimu SUZUKI (M1)

Holyoke III, C.W., Kronenberg, A.K., 2010. Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength piezometers and rheology. Tectonophysics 494, 17–31.

Kido, M., J. Muto, H. Nagahama, 2016, Method for correction of differential stress calculations from experiments using the solid salt assembly in a Griggs-type deformation apparatus. Tectonophysics, 672–673, 170–176.

 

4.Hiroshi TETSUKA (D2)

Historical and Geological Studies on Large Tsunamis in 17th Century along the Kuril and Japan Trenches.

 

[Abstract]

 

発表次第(1 February 2018, No. 1466):

 

1. HINO Taro (B3) [Charge in Dr. Muto]

  Moore, J. D. P. et al. (2017) Imaging the distribution of transient viscosity after the 2016 Mw 7.1

  Kumamoto earthquake. Science 356, 163–167. doi: 10.1126/science.aal3422

 

2. Andros Daniel Cruz Salmerón (M1)

  Cretaceous period paleoenvironmental reconstruction

 

3. KAWANO Takuhito (M1)

  浮遊性有孔虫化石を用いた白亜紀の古海洋環境復元(Cretaceous paleoceanography based on

  morphology, assemblages, and geochemistry of planktonic foraminifers)

 

[Abstract]

 

発表次第(10 January 2018, No. 1465):

 

1. HIRANO Mitsuhiro (B3) [Charge in Dr. Takayanagi]

  Henry, L, G. et al. (2016) North Atlantic ocean circulation and abrupt climate change during the

  last glaciation. Science. doi: 10.1126/science.aaf5529

 

2. YOSHIDA Kazuyuki (B3) [Charge in Dr. Suzuki]

  Schirrmeister, B. E. et al. (2015) Cyanobacteria and the Great Oxidation Event: evidence from

  genes and fossils. Palaeontology 58, 769–785. doi: 10.1111/pala.12178

 

3. AFTABUZZAMAN Mohammad (M2)

Latest Permian Mass Extinction

 

4. RIGAWA Haruka (M1)

  東南アジアにおける震央分布のフラクタル次元と,グーテンベルグ・リヒター則との相関関係

  (Correlation between seismicity map of fractal dimension and Gutenberg–Richter law in

  Southeast Asia)

 

5. ARAI Shun (D1)

  中央構造線を例とする,断層帯・断層岩の性質について(The properties of Fault zone and Fault

  rocks: an example of the Median Tectonic Line)

 

[Abstract]

 

発表次第(14 December 2017, No. 1463):

1. TAKASHIMA Arisa (B3) [Charge in Dr. Kuroyanagi]

  Sigl, M. et al. (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 years.

  Nature 523, 543–549. doi:10.1038/nature14565

 

2. YAMAGUCHI Taiki (B3) [Charge in Dr. Osozawa]

  Waku, D. et al. (2016) Evaluating the Phylogenetic Status of the Extinct Japanese Otter on the

  Basis of Mitochondrial Genome Analysis. PLoS ONE 11, e0149341.

  doi:10.1371/journal.pone.0149341

 

3. KUWABARA Sato (D1)

  研究者と地域の人をつなぐ~ジオパーク専門員のしごと(Connect researchers and local people –

  Work at Japan Geopark –)

 

[Abstract]

 

発表次第(7 December 2017, No. 1462):

1. SAKIYAMA Kosei (B3) [Charge in Dr. Osozawa]

  Aoki, K. et al. (2015) Mid-Paleozoic arc granitoids in SW Japan with Neoproterozoic xenocrysts

       from South China: New zircon U–Pb ages by LA-ICP-MS. Journal of Asian Earth Sciences 97,

       125–135. doi: 10.1016j.jseaes.2014.10.018

 

2. MACHIDA Kazuki (B3) [Charge in Dr. Asami]

       Rustic, R. T. et al. (2015) Dynamical excitation of the tropical Pacific Ocean and ENSO

       variability by Little Ice Age cooling. Science 350, 1537–1541. doi: 10.1126/science.aac9937

 

3. SUZUKI Shota (M1)

       Reconstruction of structural geological development history in Ryukyu arc

4. IWATA Daichi (D1)

       What is Bayesian statistics?

 

[Abstract]

 

発表次第(30 November 2017, No. 1461):

1. KAMEYAMA Daichi (B3) [Charge in Dr. Sasaki]

       Genikhovich, G. and Technau, U. (2017) On the evolution of bilaterality. Development 144,

       3392–3404. doi:10.1242/dev.141507

 

2. NAKAMURA Moe (B4) [Charge in Dr. Suzuki]

       Servais, T. et al. (2016) The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian.

       Palaeogeography, Palaeoclimatology, Palaeoecology 458, 12–28.

       doi: 10.1016/j.palaeo.2015.11.003

 

3. IWAI Shohei (M1)

       Geological and hydrological investigations of boulders deposited by the 2011 Tohoku-oki

       tsunami along the Sanriku coast, Japan

 

4. IWASAKI Masaaki (M1)

       Dehydration process and kinetics in the subduction zone

 

5. Irwan (D3)

       Evolution of deep ocean temperature and circulation, ice volume development, global carbon

       cycle, orbital forcing, and relationship with oceanic Mg/Ca record

 

[Abstract]

 

発表次第(16 November 2017, No. 1460):

1. USAMI Toshiaki (B3) [Charge in Dr. Asami]

       Druffel, E.R.M. et al. (2015) Identification of frequent La Niña events during the early 1800s in

       the east equatorial Pacific. Geophysical Research Letters 42, 1–8. doi:10.1002/2014GL062997

 

2. FUKUSHIMA Yoshihiro (M1)

       Research using magnetism of volcanic rock

 

3. INOUE Taiga (M1)

       Reassessment of AD 869 Jogan source model using tsunami simulation based on the

       evidences along Sanriku Coast

 

4. ISHIZAWA Takashi (D2)

       17th century tsunami deposits along the Pacific coast of Hokkaido

 

[Abstract]

 

発表次第(9 November 2017, No. 1459):

1. MINAMIDATE Kenta (B3) [Charge in Prof. Nishi]

       Carter, A. et al. (2017) Differing oxygen isotopic signals of two Globigerinoides ruber (white)

       morphotypes in the East China Sea: Implications for paleoenvironmental reconstructions.

       Marine Micropaleontology 131, 1–9. doi: 10.1016/j.marmicro.2017.01.001

 

2. HASHIMOTO Yoshitaka (M1)

       On Self-Excited Oscillations of the Earth

 

3. SEKI Kohei (M1)

 

4. Ohkawara Shusuke (D2)

       Reconstruction of deep water circulation during the mid-late Cretaceous

 

[Abstract]

 

発表次第(26 October 2017, No. 1458):

1. TAKEI Tatsuya (B3) [Charge in Dr. Asami]

       Richey and Sachs (2016) Precipitation changes in the western tropical Pacific over the past

       millennium. Geology 44, 671–674. doi: 10.1130/G37822.1

 

2. KAWASE Tomohiro (M2)

       What should we do to solve the puzzle of GOE?)

 

[Abstract]

 

発表次第(13 July 2017, No. 1455):

1. YASHIRO Masakazu (B4) [Charge in Prof. Iryu]

       Freitas, P. S., et al. (2016) Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or

       physiological control? Geochimica et Cosmochimica Acta 194, 266–278.

       doi: 10.1016/j.gca.2016.09.006

 

2. HIGAKI Hokuto (B4) [Charge in Dr. Takayanagi]

       Karas, C., et al. (2017) Pliocene oceanic seaways and global climate. Scientific Reports 7,

       39842. doi: 10.1038/srep39842

 

3. NISHIDA Mari (M1)

       Relationship between Large Igneous Provinces and Ocean Anoxic Events

 

4. KANEKO Naoto (M1)

       Crack pattern and fluid rheology

 

5. KIDO Masaki (D1)

       Effect of water on rheology of the lower crust

 

[Abstract]

 

発表次第(6 July 2017, No. 1454):

1. SUKEGAWA Takahiro (B4) [Charge in Dr. Yamada]

       Jaubert, J., et al. (2016) Early Neanderthal constructions deep in Bruniquel Cave in

       southwestern France. Nature 534, 111–115. doi:10.1038/nature18291

 

2. KAWASAKI Atsushi (B4) [Charge in Dr. Sasaki]

       Zhu, M., et al. (2017) A deep root for the Cambrian explosion: Implications of new bio- and

       chemostratigraphy from the Siberian Platform. Geology 45, 459–462. doi:10.1130/G38865.1

 

3. FUJITA Ryosuke (B4) [Charge in Dr. Takashima]

       Mahony, S. H., et al. (2016) Increased rates of large-magnitude explosive eruptions in Japan in

       the late Neogene and Quaternary. Geochemistry, Geophysics, Geosystems 17, 2467–2479. doi:

       10.1002/2016GC006362

 

4. HIRATA Momoko (D3)

      Relationship between fracturing energy and the critical slip displacement on faults

 

[Abstract]

 

発表次第(22 June 2017, No. 1453):

 

発表次第(8 June 2017, No. 1452):

1. Dr. David Fike (Department of Earth & Planetary Sciences, Washington University)

       Depositional Controls on Sulfur Isotopic (δ34S) Records: Rethinking Stratigraphic Trends &

       Geobiological Interpretations

 

2. Dr. Shawn McGlynn (Earth-Life Science Institute, Tokyo Institute of Technology)

       Redox powered ion pumps and anearobic methane oxidation - the differences between ANME

       and methanogens

 

3. TSUNODA Akihiro (B4) [Charge in Dr. Yamada]

       Lindhorst and Betzler (2016) The climate-archive dune: Sedimentary record of annual wind

       intensity. Geology 44, G38093.1. doi:10.1130/G38093.1

 

4. NOSE Yuki (B4) [Charge in Dr. Yamada]

       Jonathan B. Martin (2017) Carbonate minerals in the global carbon cycle. Chemical Geology

       449, 58–72. doi: 10.1016/j.chemgeo.2016.11.029

 

5. SATOH Akira (M2)

       Tsunami deposit study using numerical modeling

 

6. SATOH Tetsuro (D3)

       Remanent magnetization dating of tsunami boulders

 

[Abstract]

 

発表次第(1 June 2017, No. 1451):

1. TAKAHASHI Kosuke (B4) [Charge in Dr. Takayanagi]

       Le Houedec et al. (2016) Seawater Nd isotope variation in the Western Pacific Ocean since

       80 Ma (ODP 807, Ontong Java Plateau). Marine Geology 380, 138–147.

       doi: 10.1016/j.margeo.2016.07.005

 

2. SUZUKI Raim (B4) [Charge in Prof. Kaiho]

       Guex et al. (2016) Thermal erosion of cratonic lithosphere as a potential trigger for  mass-

       extinction. Scientific Reports 6, 23168. doi: 10.1038/srep23168

 

3. KUSAKAWA Haruka (M1)

      Apatite: A powerful mineral

 

4. Prof. KAIHO Kunio

      Causes and process of mass extinctions

 

[Abstract]

 

発表次第(18 May 2017, No. 1450):

1. SHIMADA Yusaku (B4) [Charge in Dr. Suzuki]

        Vinther, J. et al., 2017. Ancestral morphology of crown-group molluscs revealed by a new

        Ordovician stem aculiferan. Nature 542 , 471–474. doi:10.1038/nature21055

 

2. NAKAI Daichi (B4) [Charge in Dr. Kuroyanagi]

         O’Dea, A. et al., 2016. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883.

         doi: 10.1126/sciadv.1600883

 

3. OTOBE Hiroaki (M1)

         Carbon isotope stratigraphy during Late Cretaceous

 

4. ARIMOTO Jun (D1)

         Roadside Geology of Hawai’i

         ~ A report on the GP-EES field excursion in the Hawaiian Islands (March, 2017) ~

 

[Abstract]

 

発表次第(27 Apr 2017, No. 1449):

1. ISHIGAKI Akimasa (B4) [Charge in Dr. Suzuki]

         Tagliabue, A. et al., 2017. The integral role of iron in ocean biogeochemistry. Nature, 543,

         51–59. [doi:10.1038/nature21058]

 

2. YAMAZAKI Yu (B4) [Charge in Prof. Iryu]

Yan, H. et al., 2016. ENSO variability around 2000 years ago recorded by Tridacna gigas δ18O from the South China Sea. Quaternary International.

[doi: 10.1016/j.quaint.2016.05.011]

 

3. TANAKA Kiriha (M1)

The activity evaluation of faults

 

[Abstract]

 

発表次第(20 Apr 2017, No. 1448):

1. OGATA Yusuke (B4) [Charge in Dr. Kuroyanagi]

Toyofuku, T. et al., 2017. Proton pumping accompanies calcification in foraminifera. Nature Communications 8, 14145. [doi: 10.1038/ncomms14145]

 

2. YOSHII Kosuke (B4) [Charge in Prof. Kaiho]

Burgess, S. D. and Bowring, S. A., 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction.  Science Advances 1, e1500470. [doi: 10.1126/sciadv.1500470]

 

3. SAWA Sando (M1)

Superplasticity and Application to Earth Science

 

[Abstract]

 

–––––––––––––––––––––– 平成29年度(2017)––––––––––––––––––––––

 

発表次第(12 January 2017, No. 1447):

1.  YASHIRO Masakazu (B3) [Charge in Dr. Takashima]

 

2.   Tezuka Mio (B3) [Charge in Dr. Sasaki]

Inoue, S. and Kondo, S., 2016. Suture pattern formation in ammonites and the unknown rear mantle structure. Scientific Reports 6:33689

[ http://dx.doi.org/10.1038/srep33689 ]

 

3. TONOSAKI Takayuki (M1)

迷子石・津波石の年代推定とその問題点について [Techniques for determing a Rotation  History of Erratic Boulders and Its Technical Problems]

 

4.Jefura Amoru Yuuki  (M1)

X線CTを用いた岩石内部の定量化

 

5. Ookawara Shusuke  (D1)

後期白亜紀の温暖期における深層水の研究 [Research on Deep Water Circulation during the Late Cretaceous Warm Period]

 

発表次第(15 December 2016, No. 1445):

1.  NISHO Takuya (B3) [Charge in Dr. Osozawa]

Ito, H., 2016, Zircon U-Pb dating using LA-ICP-MS: Quaternary tephras in Boso Peninsula, Japan. Quaternary Geochronology

http://dx.doi.org/10.1016/j.quageo.2016.07.002 ]

 

2.   NAKAI Daichi (B3) [Charge in Dr. Yamada]

Staudigel, P.T. and Swart, P. K., 2016. Isotopic behavior during the aragonite-calcite transition: Implications for sample preparation and proxy interpretation. Chemical Geology, 442: 130-138

 [ http://dx.doi.org/10.1016/j.chemgeo.2016.09.013 ]

 

3. ISHIGAKI Akimasa (B3) [Charge in Prof. Kaiho]

Xue, J.Z. et al., 2016, Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant. PNAS.

[ http://www.pnas.org/cgi/doi/10.1073/pnas.1605051113 ]

 

4.KAWASE Tomohiro  (M1)

 

 

5. Bhathiya Athurupana   (D2)

Role of Natural Microstructural Observations to Explain Rheology of Lower

Continental Crust

 

発表次第( 8 December 2016, No. 1444):

1.  HIGAKI Hokuto (B3) [Charge in Dr. Sasaki]

Yoshida, H. et al., 2015. Early post-mortem formation of carbonate concretions around tusk-shells over week-month timescales. Scientific Reports, 5:14123

[ http://dx.doi.org/10.1038/srep14123 ]

 

2.  FUJITA Ryosuke (B3) [Charge in Dr. Kuroyanagi]

Mohtadi, M. et al. 2016. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature

 [ http://dx.doi.org/10.1038/nature17450 ]

 

3.  FUJIOKA Hiroshi  (M1)

Clumped isotope 古水温計の生物起源炭酸塩への応用とその問題点 (Application of Clumped Isotope Paleothermometry to Biogenic Carbonate and Problems)

 

4.HIRATA Momoko  (D2)

高圧下における断層ガウジの剪断構造発達に関する定量評価 (Quantitative Evaluation on Shear Development of Gouge under High Confining Pressure)

 

発表次第( 1 December 2016, No. 1443):

1.  Suzuki Laimu (B3) [Charge in Dr. Takashima]

Geshi, N. et al., 2014. Evaluating volumes for magma chambers and magma withdrawn for caldera collapse. Earth and Planetary Science Letters, 396: 107-115. [ http://dx.doi.org/10.1016/j.epsl.2014.03.059 ]

 

2.  Ishigaki Akimasa (B3) [Charge in Prof. Kaiho]

Xue, J.Z. et al. 2016, Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant. PNAS.

[ http://www.pnas.org/cgi/doi/10.1073/pnas.1605051113 ]

 

3.  Shimada Yusaku (B3) [Charge in Prof. Kaiho]

Bush, R.T. & McInerney, F.A. 2013, Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta, 117: 161-179. [ http://dx.doi.org/10.1016/j.gca.2013.04.016 ]

 

4.Jefura Amoru Yuuki  (M1)

Cancelled due to his own reason

 

5.  Eranga Jayawickrama (M1)

Frequency Dependency of the Bulk Modulus and the Young’s Modulus

 

6.  Sato Tetsuro (D2)

地磁気を使った年代推定法 (Magnetic Relaxation Dating for Erratic Boulders)

 

発表次第(24 November 2016, No. 1442):

1.  Takahashi Kosuke (B3) [Charge in Prof. Nishi]

Punekar, J. et al., 2014. Effect of Decan volcanism on paleoenvironment and planktic foraminifera: A global survey. Geological Society of America, Special Papers, 505. [ http://dx.doi.org/10.1130/2014.2505(04) ]

 

2.  Nakamura Moe (B3) [Charge in Dr. Osozawa]

Mouginot, P. et al., 2015. Securing paternity by mutilating female genitalia in psiders. Current Biology, 25: 2980-2984. [ http://dx.doi.org/10.1016/j.cub.2015.09.074 ]

 

3.  Oka Satoshi (B3) [Charge in Dr. Nakamori]

Chu, J.C.K. and Rovis, T., 2016. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp^3 C-H bonds. Nature:

[ http://dx.doi.org/10.1038/nature19810 ]

 

4.  Watanabe Tihaya (M1)

サンゴ骨格を用いたインド洋における海洋環境変動復元 (Reconstrucion of Indian Ocean Environmental Changes Using Coral Records)

 

発表次第(17 November 2016, No. 1441):

1.  坂田 将:微生物による石炭からメタンの生成微生物による石炭からメタンの生成

 

発表次第(10 November 2016, No. 1440):

1.  Nakai Daichi (B3) [Charge in Dr. Yamada]

 [Changes to 15th/Dec/2016 due to Yamada's sickness]

Staudigel, P.T. and Swart, P. K., 2016. Isotopic behavior during the aragonite-calcite transition: Implications for sample preparation and proxy interpretation. Chemical Geology, 442: 130-138 [ http://dx.doi.org/10.1016/j.chemgeo.2016.09.013 ]

 

2.  Shimada Yusaku (B3) [Charge in Prof. Kaiho]

Bush, R.T. & McInerney, F.A. 2013, Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta, 117: 161-179. [ http://dx.doi.org/10.1016/j.gca.2013.04.016 ]

 

3.  Iwashita Naoki (M1)

中期中新世から前期更新世における、赤道太平洋域の海洋表層環境の変遷について (Changes in Sea-surface Conditions in the Equatorial Pacific during the Middle Miocene and early Pleistocene)

 

4.  Nishida Mari (M1)

中期白亜紀海洋無酸素事変2 における大規模火成活動と無酸素水塊発達のメカニズムについて(Relationship between Emplacement of LIPs and Expansion of Ocean Anoxia during the Mid-Cretaceous OAE2)

 

5.  Kon Shusaku (D3)

Measurement and Discrepancies of Tsunami Flow Directions Using Anisotropy of Magnetic Susceptibility (AMS) and Dip Orientations of Heavy Mineral Layers in Tsunami Deposits

 

発表次第(20 October 2016, No. 1439):

1.  Yamazaki Yu  (B3) [Charge in Dr. Suzuki]

Montes, C. et al. 2015. Middle Miocene closure of the Central American Seaway. Science, 348: 226-229.

[ http://dx.doi.org/10.1126/science.aaa2815 ]

2.  Yoshii Kosuke (B3) [Charge in Prof. Nagahama]

Kuo, L.W. et al., 2016. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths. Geophysical Research Letters. 43:1950-1959.

 [ http://dx.doi.org/10.1002/2015GL066882 ]

3.  Katayama Yu'uki (M1)

始生代後期における堆積環境に関する研究―無機的指標 (The Study of Sedimentary Environments in the Late Archean – Inorganic Proxy).

4.  Muhammad Irwan (D1)

Reveal the Evolution of Tectonic, Oceanographic, and Climatic Change of the Miocene South Indian Ocean and Mediterranean: Implication for the Source of Nd and Sr in Seawater.

5.  Uchimura Hitomi (D3)

Importance and Recent Studies of the Mid-Brunhes Event (Mid-Brunhes event (MBE)研究の現状と研究意義)

 

発表次第(21th July 2016, No. 1438):

1.  Sawa Snado  (B4) [Charge in Prof. Nishi]

Hermoso, M. et al. (2013) Black shale deposition during Toarcian super-greenhouse drive by sea level. Climate of the Past, 9, 2703-2712.

[ http://dx.doi.org/10.5194/cp-9-2703-2013 ].

 

2.  Tanaka Kiriha (B4) [Charge in Dr. Osozawa]

Jones, B. R. and Jordan, S. (2015) Genetic consequences of Pleistocene sea-level change on Hawaiian Megalagrion damselflies. Journal of Heredity, 2015, 1-10.

[ http://dx.doi.org/10.1093/jhered/esv036 ].

 

3.  Shinada Takuma (M2)

浮遊性有孔虫のMg/Caを用いた水温換算式および殻におけるその分布構造 (Mg/Ca of Planktonic Foraminifera Temperature Calibration and Variation)

 

4.  Watanabe Emi (M2)

シリカ堆積における外的作用の影響 (Exogenic Process of Biosiliceous Deposition)

 

発表次第(14th July 2016, No. 1437):

1.  Prof. David Selby [host by Dr. Reishi Takashima]

Planet Earth 94 Million Years Ago – Insights into the Ocean Anoxia Event 2 – A Novel Isotope Approach.

 

2.  Otobe Hiroaki (B4) [Charge in Prof. Iryu]

Lewis, S. L. and Maslin, M. A. (2016) Defining the Anthropocene. Nature, 519, 171-180.

[ http://dx.doi.org/10.1038/nature14258 ].

 

3.  Fukushima Yoshihiro (B4) [Charge in Dr. Osozawa]

Suganuma, Y. et a. (2015) Age of Matuyama-Brunhes boundary constrained by U-Pb zircon dating of a wide-spread tephtra. Geology.

[ http://dx.doi.org/10.1130/G36625.1 ].

 

4.  Kawano Takuhito (B4) [Charge in Dr. Nakamori]

Murchy, B. P. et al. (2016) Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nature, 532, 223-227.

[ http://dx.doi.org/10.1038/nature17449 ].

 

5.  Ha Thi Nhu Thuy (M1)

Early Triassic Climate Change: Insight from Carbonate Carbon Isotopes, Sedimentary Evolution and Ammonoid Paleobiogeography.

 

6. Fukuzawa Tomohiko (M2)

岩石磁気を利用した断層岩の研究 [Rock Magnetism and Paleomagnetism of Fault Gouge].

 

発表次第(7th July 2016, No. 1436)

1.  Yomogida Kazuki (B4) [Prof. Nagahama  in charge]

Cooke, M. L. & Hadden, E. H. (2014) Is the Earth Lazy? A review of work minimization in fault evolution. Journal of Structural Geology, 66, 334-346.

[ http://dx.doi.org/10.1016/j.jsg.2014.05.004 ].

 

2.  Takeda Hiraku (M2)

津波堆積物の層厚と地形の関係 [Relationship between Tsunami Deposit Thickness and Topography].

 

3.  Tanaka Daisuke (M2)

三畳紀末大量絶滅時における海洋酸性化と当時の植生について [Ocean Acidification and Vegetation History of the End-Triassic Mass Extinction].

 

4.  Matsui Hiroki (D3)

漸新世浮遊性有孔虫の環境適応:生息深度とサイズ変化 [Oligocene Planktic Foraminiferal Adaptation: Changes in Depth Habitat and Test Size].

 

発表次第(30th June 2016, No. 1435):13:40~

1.Yamaguchi  Yuji (B4) [Dr. Suzuki in charge]

Enst, R. E. et al. (2016) Long-lived connection between southern Siberia

and northern Laurentia in the Proterozoic. Nature Geoscience, 9, 464-470.

[ http://dx.doi.org/10.1038/NGEO2700 ].

 

2. Iwasaki Masa'aki (B4)  [Dr. Suzuki in charge]

Biard, T. et al. (2016) In situ imaging reveals the biomass of giant protists

in the global ocean. Nature, 532, 504-507.

[ http://dx.doi.org/10.1038/nature17652 ]

 

3.  Takizawa Mamoru (M2)

腕足動物化石における続成作用の判定法(How to Evaluate Diagenetic Alteration of Fossil Brachiopod Shells)

 

4.  Jayawickrama Eranga Gayanath (M1)

Porosity Evolution during Brittle Ductile Transition in Rocks with Various Porosities and Their Extrapolations to the Crustal Conditions

 

発表次第(23th June 2016, No. 1434):

1. Seki Kohei (B4) [Dr. Yamada in charge]

Bocherens, H. (2015) Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quaternary Science Reviews, 117, 42 - 71.

[ http://dx.doi.org/10.1016/j.quascirev.2015.03.018 ].

 

2. Sato Shinsuke (B4)  [Dr. Takashima in charge]

Herrle et al., (2015) Mid-Cretaceous High Arctic stratigraphy, climate, and Oceanic Anoxic Events. Geology, 43, 403 - 406.

[ http://dx.doi.org/10.1130/G36439.1 ]

 

3.  Ishiguro Atsuko (M2)

ハワイ–天皇海山列の屈曲はどのように形成されたのか (History of the Hawaiian–Emperor Bend (HEB))

 

4.Kuwabara Sato (M2)

海洋コア中の広域テフラの有用性とその研究例 (Study Examples and Usefulness of Widespread Tephra in Ocean Cores)

 

発表次第(16th June 2016, No. 1433):

1. Yano Motoyasu (B4) [Dr. Kuroyanagi in charge]

Aashi, H. et al. (2016) Seasonal variability of δ18O and δ13C of planktic foraminifera in the Bering Sea and central subarctic Pacific during 1990–2000. Paleoceanography, 30

[http://dx.doi.org/10.1002/2015PA002801].

2. Kodama Satoshi (B4) [Prof. Nagahama in charge] Cancelled

Corider et al. (2016) Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature, 507, 51–56.

[ http://dx.doi.org/10.1038/nature13043]

3.    Iwata Daichi (M2)

機械学習の発展と複雑システム推定への応用 (Advancement in Machine Learning and Applications in Complex Systems)

4. Shizuya Atena (D3)

2つの堆積有機分子指標とその再検討について (Reconsideration of Two Geochemical Indices using Sedimentary Organic Molecules)

 

発表次第(9th June 2016, No. 1432):

1.Iwai Shouhei (B4) [Prof. Kaiho in charge]

Song, H. et al. (2016) Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports, 4:4132

[ http://dx.doi/org/10.1038/srep04132 ].

2.Akamine Kento (B4) [Dr. Muto in charge]

Okazaki, K. & Hirth, G. (2016) Dehydration of lawsonite could directly trigger

earthquakes in subducting oceanic crust. Nature, 530.

[ http://dx.doi.org/10.1038/nature16501]

3.  Arimoto Jun  (M2)

新生代寒冷化イベントにおける気候モードシフトおよび軌道強制力への南極氷床の応答(Climate Mode Shifts and AIS Responses to Orbital Forcing at Cenozoic Cooling Events)

4.Kikuchi Kazuhei (D3)

Differential Geometry for the Lithosphere Deformation

 

発表次第(2nd June 2016, No. 1431):

1.Takahiro Shinohara (B4) [Dr. Takayanagi in charge]

Rahmstorf, S. et al. (2016) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climatic Change, 5 (online 23 Mar 2015)

[ http://dx.doi.org/10.1038/NCLIMATE2554 ].

2.Raman Kumar Biswas (M2)

Unique Biomarkers and their Distribution in East Greenland

3.  Dr. Azumi Kuroyanagi

浮遊性有孔虫が記録する海洋環境:どのような環境指標として有効か? (The Reliability of Planktonic Foraminifera as a Proxy for the Sea Surface Environment)

4.Shota Suzuki (B4)   [Dr. Muto in charge]

Ko, B. & Jung, H. (2015) Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Communications, 6:6586

[ http://dx.doi.org/10.1038/ncomms7586 ].

 

発表次第(19 May 2016, No. 1430):

1.Kaede Ino (B4)   [Dr. Yamada in charge]

Hazotte, A. A. et al. (2016) Microbial mobilization of cesium from illite: The role of organic acids and siderophores. Chemical Geolology, 428, 8-14

[http://dx.doi.org/10.1016/j.chemgeo.2016.02.024]

2.Haruka Kusakawa (B4) [Dr. Sasaki in charge]

Zeebe, R. E. et al. (2016) Anthropogenic carbon release rate unprecedented

during the past 66 million years. Nature Geoscience, 9, 325-329

 [http://dx.doi.org/10.1038/NGEO2681]

 

3.Mami Miura (M2)

後期デボン紀の海で無酸素/還元環境はどう広がったのか (How Did Anoxic/Euxinic Water Mass Spread during the Late Devonian?)

 

4. Takafumi Kamata (M2)

 浜堤および海岸砂丘の形成と発達 (Formation and Development of Beach Ridge and Coastal Dune)

5. Hitomi Uchimura (D3) Cancelled

 

講演要旨のダウンロード(要パスワード)[Abstract (password required)

 

発表次第(28 April 2016, No. 1429):

1.Isamu Mekaru (B4: relevant to B3 duty) [Dr. Sasaki in charge]

Just, J. et al. (2014) Dendrogramma, new genus, with two new non-bilaterian species from the marine bathyal of southeastern Australia (Animalia, Metazoa incertae sedis) – with similarities to some medusoids from the Precambrian Ediacara. PLOS One. (http://dx.doi.org/10.1371/journal.pone.0102976)

2.Yoshitaka Kaneko (M2)

 生物の棲み分けについて(Introduction of habitat segregation)

3.Gyawali. Babu RAM (D2)

1. Boltron et al. 2016 Decrease in coccolithophore calcification and CO2 since the middle Miocene. (http://dx.doi.org/10.1038/ncomms10284)

2. Boltron et al. 2012 Vital effects in coccolith calcite: Cenozoic climate-pCO2 drove the diversity of carbon acquisition strategies in coccolithophores?

(http://dx.doi.org/10.1029/2012PA002339)

4.  Dr. Reishi Takashima

    アパタイト微量元素組成を用いた新しいテフロクロノロジ―

   (New tephrochronology based on trace element composition of apatite phenocrysts)

 

–––––––––––––––––––––– 平成28年度(2016)––––––––––––––––––––––