Archives(2023-)
発表次第(30 Jan. 2025, 1609):
1. SAITO Marin (M1)
硬⾻海綿の⽣態と環境復元への利⽤
(Ecology of sclerosponges and their use in environmental reconstruction)
Macartney K J. , Pankey M. S. , Slattery M. , Lesser M P. , 2020, Trophodynamics of the sclerosponge Ceratoporella nicholsoni along a shallow to mesophotic depth gradient, Coral Reefs, 39, 1829‒1839.
DOI: 10.1007/s00338-020-02008-3
Waite A. J. , Klavans J. M. , Clement.A. C. , Murphy L N. ,Liebetrau V. , Eisenhauer A. , Weger R J. , and Swart.P K. , Observational and Model Evidence for an Important Role for Volcanic Forcing Driving Atlantic Multidecadal Variability Over the Last 600 Years, Geophys. Res. Lett, 47.
DOI: 10.1029/2020GL089428
2. OISHI Akihiro (M2)
最終氷期におけるダンスガード・オシュガーサイクルと同調する気候記録
(Climate records synchronized with the Dansgaard–Oeschger cycle during the last glacial period)
C. J. Batchelor, S. A. Marcott, I. J. Orland, F. He and R. L. Edwards ,2023, Decadal warming events extended into central North America during the last glacial period. Nature Geoscience 16, 257–261.
DOI: 10.1038/s41561-023-01132-3
Jingrui Li. Xuefa Shi , Shengfa Liu, Fangliang Li , Xiaoming Miao , Rui Jiang,2024,Sensitive response of erosion and weathering to the Indian Summer Monsoon changes in South Asia during Dansgaard-Oeschger oscillations. Palaeogeography, Palaeoclimatology, Palaeoecology 655, 112516.
DOI: 10.1016/j.palaeo.2024.112516
3. ARAKI Tsubasa (M2)
⿊潮続流の北上と北太平洋亜熱帯モード⽔への影響
(Poleward shift of the Kuroshio Extension and its impact on the North Pacific Subtropical Mode Water)
Kawakami, Y., Nakano, H., Urakawa, L. S., Toyoda, T., Aoki, K., and Usui, N., 2023,
Northward shift of the Kuroshio Extension during 1993–2021. Scientific Reports, 13, 16223.
DOI: 10.1038/s41598-023-43009-w
2. Wu, B., Lin, X., and Yu, L., 2021, Poleward shift of the Kuroshio extension front and its impact on the North Pacific subtropical mode water in the recent decades. Journal of Physical Oceanography, 51, 457-474.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(11 Jan. 2024, 1585):
1. KAJIMURA Kenta(B3: Dr. ASAMI in charge)
de Graaf, S., Vonhof, H.B., Reijmer, J.J.G., Feenstra, E., Mienis, F., Prud'Homme, C., Zinke, J., van der Lubbe, J.H.J.L., Swart, P.K. and Haug, G., 2022, Analytical Artefacts Preclude Reliable Isotope Ratio Measurement of Internal Water in Coral Skeletons. Geostand Geoanal Res, 46: 563-577.
DOI: 10.1111/ggr.12445
2. OHUE Yuta(B3: Dr. SAWA in charge)
Margo E. Regier, Karen V. Smit, Thomas B. Chalk, Thomas Stachel, Richard A. Stern, Evan M. Smith, Gavin L. Foster, Yannick Bussweiler, Chris DeBuhr, Antony D. Burnham, Jeff W. Harris, D. Graham Pearson, 2023, ‘Boron isotopes in blue diamond record seawater-derived fluids in the lower mantle’ Earth and Planetary Science Letters 602 (2023) 117923
DOI: 10.1016/j.epsl.2022.117923
3. AKIOKA Soma(B3: Dr. SAWA in charge)
Siegler, M.A., Feng, J., Lehman-Franco, K. et al., 2023, Remote detection of a lunar granitic batholith at Compton– Nature 620, 116–121
DOI: 10.1038/s41586-023-06183-5
4. SHIMADA Tomoya(M1)
Interaction and application of graphene oxide and natural minerals
酸化グラフェンと天然鉱物の相互作用と応用
Lu, X., Lu, T., Zhang, H., Shang, Z., Chen, J., Wang, Y., Li, D., Zhou, Y. & Qi, Z., 2019, Effects of solution chemistry on the attachment of graphene oxide onto clay minerals. Environ Sci Process Impacts, 21, 506–513.
DOI: 10.1039/C8EM00480C
Xuan, Y., Li, D., Pang, S. & An, Y., 2023, Recent advances in the applications of graphene materials for the oil and gas industry. RSC Adv., 13, 23169–23180.
DOI: 10.1039/D3RA02781C
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(4 Jan. 2023, 1584):
1. YAMAGISHI Komei(B3: Dr. SUGAWARA in charge)
Pilarczyk, J. E., Sawai, Y., Namegaya, Y., Tamura, T., Tanigawa, K., Matsumoto, D., Shinozaki, T., Fujiwara, O., Shishikura, M., Shimada, Y., Dura, T., Horton, B. P., Parnell, A. C. and Vane, C. H., 2021, A further source of Tokyo earthquakes and Pacific Ocean tsunamis. Nat. Geosci., 14, 796– 780.
DOI: 10.1038/s41561-021-00812-2
2. ARAKI Tsubasa(M1)
Reproduction of mode waters using the analyzed climate models
気候モデルの解析結果を⽤いたモード⽔の再現
Hong, Y., Du, Y., Xia, X., Xu, L., Zhang, Y., & Xie, S. P., 2021, Subantarctic mode water and its long-term change in CMIP6 models. Journal of Climate, 34, 9385-9400.
DOI: 10.1175/JCLI-D-21-0133.s1
Qiu, Z., Wei, Z., Nie, X., & Xu, T., 2021, Southeast Indian Subantarctic mode water in the CMIP6 coupled models. Journal of Geophysical Research: Oceans, 126, e2020JC016872.
DOI: 10.1029/2020JC016872
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(21 Dec. 2023, 1583):
1. TAKAHASHI Kosuke(B3: Prof. Iryu in charge)
Cooper, A., Turney, C. S., Palmer, J., Hogg, A., McGlone, M., Wilmshurst, J., ... & Zech, R., 2021, A global environmental crisis 42,000 years ago. Science, 371(6531), 811-818.
2. TSUCHIYA Mayu(M1)
地震活動に関連した水および土壌中のラドン濃度異常
Radon concentration anomalies in water and soil associated with seismic activity
Külahcı, F. & Çiçek, S., 2015, Time-series analysis of water and soil radon anomalies to identify micro–macro-earthquakes. Arab J Geosci, 8, 5239-5246.
DOI: 10.1007/s12517-014-1513-9
Karastathis, V, K., Eleftheriou, G.,Kafatos, M., Tsinganos, K., Tselentis, G., Mouzakiotis, E. & Ouzounov, D., 2022, Observations on the stress related variations of soil radon concentration in the Gulf of Corinth, Greece. Sci Rep, 12, 5442
DOI: 10.1038/s41598-022-09441-0
3. HASHIMOTO Yuri(M1)
気候変動に対する浮遊性有孔虫の応答
Response of planktic foraminifera to climate change
Strack, A., Jonkers, L., C. Rillo, M., Hillebrand, H., & Kucera, M., 2022, Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nature Ecology & Evolution, 6(12), 1871-1880.
DOI: 10.1038/s41559-022-01888-8
Kinoshita, S., Wang, Q., Kuroyanagi, A., Murayama, M., Ujiié, Y., & Kawahata, H., 2022, Response of planktic foraminiferal shells to ocean acidification and global warming assessed using micro-X-ray computed tomography. Paleontological Research, 26(4), 390-404.
DOI: 10.2517/PR200043
4. FURUKAWA Miho(D1)
マイクロCTで見る多孔質岩石内部の空隙構造
Pore structures inside porous rocks captured by micro-CT
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(14 Dec. 2023, 1582):
1. MIKAMI Yuya(B3: Dr. YAMADA in charge)
Spötl, C., Dublyansky, Y., Koltai, G., Honiat, C., Plan, L., & Angerer, T., 2021, Stable isotope imprint of hypogene speleogenesis: Lessons from Austrian caves. Chemical Geology, 572, 120209.
DOI: 10.1038/s41561-023-01227-x
2. YAMASHITA Tomohiro(B3: Prof. TAKASHIMA in charge)
Tejada, M.L.G., Sano, T., Hanyu, T. et al., 2023, New evidence for the Ontong Java Nui hypothesis. Sci Rep 13, 8486.
DOI: 10.1038/s41598-023-33724-9
4. OIKAWA Kazuma(D3)
Clumped-isotope thermometer of brachiopod
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(7 Dec. 2023, 1581):
1. HARIGAI Syunto(B3: Dr. KUROYANAGI in charge)
SVermassen, F., O’Regan, M., de Boer, A. et al., 2023, A seasonally ice-free Arctic Ocean during the Last Interglacial. Nat. Geosci. 16, 723–729.
DOI: 10.1038/s41561-023-01227-x
2. HARA Kairi(B3: Prof. TAKAYANAGI in charge)
Zhang, S., Yu, Z., Wang, Y. et al., 2022. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years. Nature Communications, 13, 5457.
DOI: s41467-022-33206-y
3. TANIGAWA Daichi(M1)
テフラの保存環境・時間経過における変化
Changes in tephra storage environment and over time
Jenni L. Hopkins., Richard J. Wysoczanski., Alan R. Orpin., Jamie D. Howarth., Lorna J. Strachan., Ryan Lunenburg.,...Sian Camp., 2020, Deposition and preservation of tephra in marine sediments at the active Hikurangi subduction margin. Quaternary Science Reviews, 247, 106500.
DOI: 10.1016/j.quascirev.2020.106500
N.A. Cutler., R.T. Streeter., S.L. Engwell., M.S. Bolton., B.J.L. Jensen., A.L. Dugmore., 2020, How does tephra deposit thickness change over time? A calibration exercise based on the 1980 Mount St Helens tephra deposit. Journal of Volcanology and Geothermal Research, 399, 106883
DOI: 10.1016/j.jvolgeores.2020.106883
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(30 Nov. 2023, 1580):
1. ARAKANE Miki(M2)
淡水真珠の地球化学的・鉱物学的情報と湖の季節的環境変化
Coupling Geochemical and Mineralogical data of Freshwater Nacre to Seasonal Environmental Changes in Kentucky Lake
Farfan, G. A., Zhou, C., Valley, J. W. and Orland, I. J. 2021 Coupling mineralogy and oxygen isotopes to seasonal environmental shifts recorded in modern freshwater pearl nacre from Kentucky Lake. Geochemistry, Geophysics, Geosystems , 22 (12),
DOI: 10.1029/2021GC009995
Farfan, G. A., Bullock, E. S., Zhou, C. and Valley, J. W. W., 2023 Geochemical and mineralogical proxies beyond temperature: Autumn seasons trapped in freshwater nacre. Geochimica et Cosmochimica Acta , 355 , 126 137.
DOI: 10.1016/j.gca.2023.06.033
2. KITA Yukiko(M2)
オリビン+フェロペリクレース合成多結晶体用いた変形実験における第2相の影響
The Effect of Secondary Phase on the Deformation of Olivine + Ferropericlase Aggregates
Harison S. Wiesman, Mark E. Zimmerman, David L. Kohlstedt, 2023, The Effect of Secondary‐Phase Fraction on the Deformation of Olivine + Ferropericlase Aggregates: 1. Microstructural Evolution, Journal of Geophysical Research: Solid Earth, 128, 4.
DOI: 10.1029/2022JB025723
Harison S. Wiesman, Mark E. Zimmerman, David L. Kohlstedt, 2023, The Effect of Secondary‐Phase Fraction on the Deformation of Olivine + Ferropericlase Aggregates: 2. Mechanical Behavior, Journal of Geophysical Research: Solid Earth, 128, 4.
DOI: 10.1029/2022JB025724
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(16 Nov. 2023, 1579):
1. HARA Yusuke(B3: Prof. MUTO in charge)
Xin Cui, Zefeng Li and Yan Hu., 2023. Similar seismic moment release process for shallow and deep earthquakes. Nature Geoscience, 16, pp. 454-460.
DOI: 10.1038/s41561-023-01176-5
2. OTSUBO Takumi(M2)
カーニアン多雨事象に関する近年の層序学的検討
The recent stratigraphic research on the Carnian Pluvial Episode
Lu, J., Zhang, P., Dal Corso, J., Yang, M., Wignall, P. B., Greene, S. E., ... & Hilton, J., 2021. Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proceedings of the National Academy of Sciences, 118(40), e2109895118.
Tomimatsu, Y., Nozaki, T., Onoue, T., Matsumoto, H., Sato, H., Takaya, Y., ... & Rigo, M., 2023, Pelagic responses to oceanic anoxia during the Carnian Pluvial Episode (Late Triassic) in Panthalassa Ocean. Scientific reports, 13(1), 16316.
DOI: 10.1038/s41598-023-43525-9
3. WATANABE Kaito(M2)
地質温度計を⽤いたマイロナイトの変形温度の推定
Estimation of Deformation Temperature of Mylonite using Geothermometer.
Zhou, B.J., Liu, J.L., Chen, X.Y. and Hou, C.R., 2022, Fluid-enhanced grain-size reduction of K-feldspar from a natural middle crustal shear zone in northern Beijing, China. Tectonophysics, 838, 229478.
DOI: 10.1016/j.tecto.2022.229478
Taylor, J.M., Teyssier, C., Whitney, D.L., *McFadden, R.R. and Barou, F., 2023, Linked microstructural and geochemical evolution of mylonitic quartzite during exhumation of a core complex. Journal of Structural Geology, 169, 104846.
DOI: 10.1016/j.jsg.2023.104846
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(9 Nov. 2023, 1578):
1. TAKAHASHI Keigo(B3: Dr. ASAMI in charge)
Sayani, H. R., Cobb, K. M., Monteleone, B., & Bridges, H., 2022, Accuracy and reproducibility of coral Sr/Ca SIMS timeseries in modern and fossil corals. Geochemistry, Geophysics, Geosystems, 23, e2021GC010068.
DOI: 10.1029/2021GC010068
2. OGITA Kosei(B3: Prof. IRYU in charge)
Bracchi, V.A., Purkis, S.J., Marchese, F. et al., 2023, Mesophotic foraminiferal-algal nodules play a role in the Red Sea carbonate budget. Commun Earth Environ 4, 288.
DOI: 10.1038/s43247-023-00944-w
3. NAGAFUCHI Haruya(M2)
中期~後期完新世の日本周辺の古環境研究
Garas, Kevin L., Watanabe, T., Yamazaki, A., 2023, Hydroclimate seasonality from paired coral Sr/Ca and δ18O records of Kikai Island, Southern Japan: Evidence of East Asian monsoon during mid-to late Holocene. Quaternary Science Reviews, 301, 107926
DOI: 10.1016/j.quascirev.2022.107926
Liangkang Pan, Jingyao Zhao, Yan Yang, Kexin Wang, Carlos Pérez-Mejías, Jiahui Cui, Xiyu Dong, Rui Zhang, Hai Cheng, 2023, Different responses of precipitation patterns to the East Asian summer monsoon weakening: The 7.2 and 8.2 ka events. Quaternary Science Reviews, 319, 108329
DOI: 10.1016/j.quascirev.2023.108329
4. YOKOYAMA Hiroaki(D2)
炭質物のラマンスペクトルに及ぼす変形の影響
Effects of Deformation on Raman Spectra of Carbonaceous Materials
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(26 Oct. 2023, 1577):
1. UMAKOSHI Hiroki (B3: Dr. MUTO in charge))
Xu, S., Fukuyama, E., Yamashita, F. et al., 2023, Fault strength and rupture process controlled by fault surface topography. Nat. Geosci. 16, 94–100.
DOI: 10.1038/s41561-022-01093-z
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(19 Oct. 2023, 1576):
1. KIMOTO Yuna(M2)
海洋熱量(OHC)に注目した水文条件と気候変動の復元
Reconstruction of hydrologic conditions and climate change focusing on ocean heat content (OHC)
Jian, Z., Wang, Y., Dang, H. H., Mohtadi, M., Y., Lea, D. W ., Liu, Z., Jin, H., Ye, L., Kuhnt, W. and Wa ng, X. 2022, Warm pool ocean heat content regulates ocean continent moisture transport. Nature 612 , 92 99
DOI: 10.1038/s41586-022-05302-y
Liu , S., Shi, X., Wang, K., Chen , M., Ye, W., Z han g, H., Cao, P., Li, J., Li, X., Khokiattiwong, S. and Kornkanitnan, N. N.., 2022, Synchronous millennial surface stratified events with AMOC and tropical dynamic changes in the northeastern Indian Ocean over the past 42 ka Quaternary Science Reviews, 284, 107495
DOI: 10.1016/j.quascirev.2022.107495
2. SUDA Makoto(M2)
対数混合則による線形粘弾性モデルの構成とその物理的解釈
Formulation of linear viscoelastic models via logarithmic mixing law and its physical interpretation.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(20 Jul. 2023, 1575):
1. TOJO Hiroto(B4: Dr. Iryu in charge)
Toth, L. T. and Aronson, R. B., 2019, The 4.2 ka event, ENSO, and coral reef development, Clim. Past, 15, 105–119.
2. MITO Yuga(M1)
海洋堆積物中の第四紀テフラの給源推定に関する研究
Study on source of Quaternary tephra in marine sediments
McCarthy, A., Yogodzinski, G., Tepley III, F. J., Bizimis, M., Arculus, R., & Ishizuka, O., 2019, Isotopic characteristics of Neogene‐Quaternary tephra from IODP Site U1438: A record of explosive volcanic activity in the Kyushu‐Ryukyu arc. Geochemistry, Geophysics, Geosystems, 20(5), 2318-2333.
DOI: 10.1029/2019GC008267
Corry-Saavedra, K., Schindlbeck, J. C., Straub, S. M., Murayama, M., Bolge, L. L., Gómez-Tuena, A., ... & Woodhead, J. D., 2019, The role of dispersed ash in orbital-scale time-series studies of explosive arc volcanism: insights from IODP Hole U1437B, Northwest Pacific Ocean. International Geology Review, 61(17), 2164-2183.
DOI: 10.1080/00206814.2019.1584770
3. TOMARU Taiga(M2)
白亜紀前期Aptianの国際標準年代に関する最新研究
The latest researches on Early Cretaceous Aptian geologic timescale
Charbonnier, G., Boulila, S., Spangenberg, J. E., Vermeulen, J., Galbrun, B., 2023, Astrochronology of the Aptian stage and evidence for the chaotic orbital motion of Mercury. Earth and Planetary Science Letters, 610, 118104.
DOI: 10.1016/j.epsl.2023.118104
Li, Y., Qin, H., Jicha, B. R., Huyskens, M. H., Wall, C. J., Trayler, R. B., ..., Zhu, R., 2023, Revised onset age of magnetochron M0r: Chronostratigraphic and geologic implications. Geology, 51(6), 565-570.
DOI: 10.1130/G50873.1
4. MINAMIDATE Kenta(D3)
気候変動によって台風活動はどう変わるか?
How does tropical cyclone activity change with climate change?
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(13 Jul. 2023, 1574):
1. TAKENAWA Tomohiro(B4: Dr. TAKAYANAGI in charge)
Davis, C.V., Sibert, E.C., Jacobs, P.H. et al., 2023, Intermediate water circulation drives distribution of Pliocene Oxygen Minimum Zones. Nat Commun 14, 40.
DOI: 10.1038/s41467-022-35083-x
2. NAKANO Sota(B4: Dr. ASAMI in charge)
Chen, M., Chia, H. K., Martin, P., Lee, J. N., Bettens, R. P., & Tanzil, J. T. (2022). A half-century record of coral skeletal P/Ca reveals late 20th century nutrient pollution in Port Dickson, Malaysia. Marine Pollution Bulletin, 181, 113875.
DOI: 10.1016/j.marpolbul.2022.113875
3. NAKAZAWA Tatsuki(B4: Dr. SUGAWARA in charge)
Carlton, J. T., Chapman, J. W., Geller, J. B., Miller, J. A., Carlton, D. A., McCuller, M. I., ... & Ruiz, G. M., 2017, Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography. Science, 357(6358), 1402-1406.
4. YOSHIBE Momo(M1)
中新世のサンゴ礁堆積物の堆積史に関する研究
Study on the depositional history of Miocene coral reef sediments
Yang Y., Kefu Yu, Wang R, Fan T, Jiang W, Xu S, Li Y., Zhao J., 2022, 87Sr/86Sr of coral reef carbonate strata as an indicator of global sea level fall: Evidence from a 928.75-mlong core in the South China Sea, Marine Geology, Volume 445, 106758
DOI: 10.1016/j.margeo.2022.106758
Irina A. Vishnevskaya, Marc Humblet, Yasufumi Iryu, Davide Bassi, Tatiana G. Okuneva, Daria V. Kiseleva, Andrey V. Vishnevskiy , Natalia G. Soloshenko, Pavel E. Mikhailik, 2022, Sr isotope variations in Oligocene‒Miocene and modern biogenic carbonate formations of Koko Guyot (Emperor Seamount Chain, Pacific Ocean), Marine Geology Volume 451, 106879
DOI: 10.1016/j.margeo.2022.106879
5. IIDA Masaki(M2)
粒子パラメータに着目した津波堆積物の識別手法
Identification method of tsunami deposits focusing on particle parameters
Ishimura. D., Ishizawa. T., Yamada. M. Aoki. K. and Sato. K., 2022, Washover deposits related to tsunami and storm surge along the north coast of the Shimokita Peninsula in northern Japan. Prog. Earth Planet. Sci., 69.
DOI: 10.1186/s40645-022-00529-9
Chmielowska, D., Woronko. B. and Dorocki. S., 2021, Applicability of automatic image analysis in quartz-grain shape discrimination for sedimentary setting reconstruction. Catena, 207.
DOI: 10.1016/j.catena.2021.105602
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(6 Jul. 2023, 1573):
1. SAITO Marin(B4: Dr. KUROYANAGI in charge)
Hoogakker, B.A.A., Anderson, C., Paoloni, T. et al., 2022, Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling. Nat Commun 13, 4841.
DOI: 10.1038/s41467-022-32480-0
2. OUCHI SAKURAKO(B4: Dr. SUZUKI in charge)
Feng, Y., Song, H., and Bond, D., 2020, Size variations in foraminifers from the early Permian to the Late Triassic: Implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions. Paleobiology, 46(4), 511-532.
DOI: 10.1017/pab.2020.37
3. MURAKAMI Issei(M2)
OAE2における⽣態系への環境ストレスとOAE2の進⾏過程
Gabriella D. Kitch, Andrew D. Jacobson, Bradley B. Sageman, Rodolfo Coccioni, Tia Chung-Swanson, Meagan E. Ankney, and Matthew T. Hurtgen, 2022, Calcium isotope ratios of malformed foraminifera reveal biocalcification stress preceded Oceanic Anoxic Event 2, Communications Earth & Environment, 3, 315.
DOI: 10.1038/s43247-022-00641-0
Gregory T. Connock, Jeremy D. Owens & Xiao-Lei Liu, 2022, Biotic induction and microbial ecological dynamics of Oceanic Anoxic Event 2, Communications Earth & Environment, 3, 136.
DOI: 10.1038/s43247-022-00466-x
3. HIRANO MITSUHIRO(D3)
Hello, optical lattice clock
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(22 Jun. 2023, 1572):
1. SATO Yuito(M1)
高解像度X 線CT 画像を用いたイベント砂層の粒子ファブリック測定とその活用
Sediment fabric measurement of event deposits using high-resolution X-ray CT images and its application.
M. Biguenet, E. Chaumillon, P. Sabatier, R. Paris, P. Vacher, N. Feuillet, 2022, Discriminating between tsunamis and tropical cyclones in the sedimentary record using Xray tomography, Marine Geology, 450, 106864.
DOI: 10.1016/j.margeo.2022.106864
R. Paris, S. Falvard, C. Chagué, J. Goff, S. Etienne, P. Doumalin, 2019, Sedimentary fabric characterized by X-ray tomography: A case-study from tsunami deposits on the Marquesas Islands, French Polynesia, Sedimentology, 67, 3, 1207-1229.
DOI: 10.1111/sed.12582
2. GOITSE MOSEKIEMANG(M2)
DIAGENETIC DOLOMITES AS CONSTRAINT TO THE DOLOMITE PROBLEM
Chang, B., Li, C., Liu, D., Foster, I., Tripati, A., Lloyd, M. K., ... and Immenhauser, A, 2020, Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proceedings of the National Academy of Sciences, 117(25), 14005-14014.
Miao, Z., Gong, E., Zhang, Y., Guan, C., and Huang, W., 2020, Burial dolomitization, the genesis of dolomite in the Dapu Formation (Upper Carboniferous), Guixinan area, Youjiang basin, Southwest China: petrologic and geochemical evidence. Carbonates and Evaporites, 35, 1-14.
DOI: 10.1007/s13146-020-00594-5
3. HOSOGAYA Kohei(D1)
オスミウム同位体比と海洋無酸素事変1bの解析
Ocean Anoxic Event 1b based on osmium isotope analysis
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(8 Jun. 2023, 1571):
1. TSUJIMOTO Daiki(B4: Dr. YAMADA in charge)
Christoph Spötl, Yuri Dublyansky, Gabriella Koltai, Hai Cheng, 2021, Hypogene speleogenesis and paragenesis in the Dolomites, Geomorphology Volume 382, 1 June 2021, 107667,
DOI: 10.1016/j.geomorph.2021.107667
2. TAKEDA Atae(B4: Dr. MUTO in charge)
Sunyoung Park, Jean-Philippe Avouac, Zhongwen Zhan and Adriano Gualandi, 2023, Weak upper-mantle base revealed by postseismic deformation of a deep earthquake, Nature, Vol 615, pp. 455−460
DOI: 10.1038/s41586-022-05689-8
3. MITO Yuga(M1)
カルデラの噴火年代や古カルデラ堆積物の起源についての最近の研究
Recent studies on the age of caldera eruptions and the origin of paleo-caldera deposits
Avellán, D. R., Macías, J. L., Layer, P. W., Sosa-Ceballos, G., Gómez-Vasconcelos, M. G., Cisneros-Máximo, G., ... and Benowitz, J., 2020, Eruptive chronology of the Acoculco caldera complex–A resurgent caldera in the eastern Trans-Mexican Volcanic Belt (México). Journal of South American Earth Sciences, 98, 102412.
DOI: 10.1016/j.jsames.2019.102412
Ocampo-Díaz, Y. Z. E., Sosa-Ceballos, G., Saucedo, R., Macías, J. L., Bolos, X., Radilla-Albarrán, U. A., ... and Cisneros-Maximo, G., 2021, Provenance and compositional variations of intra-caldera lake sediments at La Primavera, Jalisco, Western Mexico. Journal of South American Earth Sciences, 110, 103335.
DOI: 10.1016/j.jsames.2021.103335
4. HOSODA Akane(M2)
20 世紀以降の海洋の温暖化傾向
Warming trend of the oceans since the 20th century
Zhenhao Xu, Fei Ji, Bo Liu, Taichen Feng, Yuan Gao, Yongli He, Fei Chang, 2021, Long-term evolution of global sea surface temperature trend, Int. J. Climatol., 4437-4459.
DOI: 10.1002/joc.7082
Wenrong Bai, Hailong Liu, Pengfei Lin, Shijian Hu and Fan Wang, 2022, Indo-Pacific warm pool present warming attribution and future projection constraint, Environ. Res. Lett., 17 054026.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(1 Jun. 2023, 1570):
1. TOGASHI Kotomi(B4: Dr. SAWA in charge)
Hoover, W. F., Condit, C. B., Lindquist, P. C., Moser, A. C., and Guevara, V. E. (2022). Episodic slow slip hosted by talc-bearing metasomatic rocks: High strain rates and stress amplification in a chemically reacting shear zone. Geophysical Research Letters, 49, e2022GL101083.
DOI: 10.1029/2022GL101083
2. KAWASHIMA Hana(B4: Dr. TAKASHIMA in charge)
Hironao Matsumoto, Rodolfo Coccioni, Fabrizio Frontalini, Kotaro Shirai, Luigi Jovane, Ricardo Trindade, Jairo F. Savian, Maria Luisa G. Tejada, Silvia Gardin, Junichiro Kuroda; Long-term Aptian marine osmium isotopic record of Ontong Java Nui activity. Geology 2021;; 49 (9): 1148–1152.
DOI: 10.1130/G48863.1
3. KOMEIJI Kaito(M2)
視認困難な津波痕跡の検出における無機・有機地球化学の活⽤
Application of inorganic and organic geochemistry for detection of invisible tsunami traces
C. Chagué et al., 2020, A 7300 year record of environmental changes in a coastal wetland (Moawhitu), New Zealand, and evidence for catastrophic overwash (tsunami?). Sedimentary Geology, 407, 105746.
T. Shinozaki et al., 2022, Identifying tsunami trace beyond sandy tsunami deposits using terrigenous biomarkers: a case study of the 2011 Tohoku-oki tsunami in a coastal pine forest, northern Japan. Progress in Earth and Planetary Science, 9, 29.
DOI: 10.1186/s40645-022-00491-6
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(18 May 2023, 1569):
1. KAWATAKE Kazuho(B4: Dr. YAMADA in charge)
Munroe, J., Kimble, K., Spötl, C. et al., 2021, Cryogenic cave carbonate and implications for thawing permafrost at Winter Wonderland Cave, Utah, USA. Sci Rep. 11, 6430.
DOI: 10.1038/s41598-021-85658-9
2. MIURA Akito(B4: Dr. TAKASHIMA in charge)
Chen, H., Xu, Z., Bayon, G., Lim, D., Batenburg, S. J., Petrizzo, M. R., ... and Li, T., 2022, Enhanced hydrological cycle during Oceanic Anoxic Event 2 at southern high latitudes: New insights from IODP Site U1516. Global and Planetary Change, 209, 103735.
DOI: 10.1016/j.gloplacha.2022.103735
3. ODA Hiroto(M1)
海水温度計の作成に関わる問題の評価法と日本周辺の完新世気候変動研究の最近
Watanabe, Takaaki K., and Pfeiffer, M., 2022, A Simple Monte Carlo Approach to Estimate the Uncertainties of SST and δ18Osw Inferred From Coral Proxies. Geochem. Geophys. Geosyst., 23, e2021GC009813.
DOI: 10.1029/2021GC009813
Kajita, H., Isaji, Y., Kato, R., Nishikura, Y., Murayama, M., Ohkouchi, N.,...Kawahata, H., 2023, Climatic change around the 4.2 ka event in coastal areas of the East China Sea and its potential influence on prehistoric Japanese people. Palaeogeogr. Palaeoclimatol. Palaeoecol., 609, 111310.
DOI: 10.1016/j.palaeo.2022.111310
4. SEKIGUCHI Takuma(M2)
ダメージゾーンの岩石粉砕現象に伴うエネルギー消費について
Energy consumption associated with the seismological fracture in the damage zone of fault.
Aben, F. M., Brantut, N., and Mitchell, T. M., 2020, Off-fault damage characterization during and after experimental quasi-static and dynamic rupture in crustal rock from laboratory P wave tomography and microstructures. Journal of Geophysical Research: Solid Earth, 125(8).
DOI: 10.1029/2020JB019860
Johnson, S. E., Song, W. J., Vel, S. S., Song, B. R., and Gerbi, C. C. (2021). Energy partitioning, dynamic fragmentation, and off-fault damage in the earthquake source volume. Journal of Geophysical Research: Solid Earth, 126(11).
DOI: 10.1029/2021JB022616
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(27 Apr. 2023, 1568):
1. NISHIYOSHI Daigo(B4: Dr. KUROYANAGI in charge)
Morard, R., Hassenrück, C., Greco, M. et al., 2022, Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers. Nat Commun 13, 7135.
DOI: 10.1038/s41467-022-34794-5
2. HORIKAMI Syunnosuke(B4: Dr. SUGAWARA in charge)
Range, M. M., Arbic, B. K., Johnson, B. C., Moore, T. C., Titov, V., Adcroft, A. J., et al., 2022, The Chicxulub impact produced a powerful global tsunami. AGU Advances, 3, e2021AV000627.
DOI: 10.1029/2021AV000627
3. MASUDA Hidetoshi(M2)
古津波の数値モデリングに関する最近の進展
Recent progress in numerical modeling of paleotsunamis
Nakanishi, R. and Ashi, J., 2022, Sediment transport modeling based on geological data for Holocene coastal evolution: wave source estimation of sandy layers on the Coast of Hidaka, Hokkaido, Japan. Journal of Geophysical Research: Earth Surface, 127, e2022JF006721.
DOI: 10.1029/2022JF006721
Cifuentes-Lobos, R., Calisto, I., MacInnes, B. et al., 2023, A stochastic approach to the characterization of the seismic sources: a potential method for the assessment of sources of historical and paleo tsunami. Stoch Environ Res Risk Assess.
DOI: 10.1007/s00477-023-02397-1
4. MACHIDA Kazuki(D3)
中央海嶺と地熱地帯における地震の潮汐トリガーについての最近の分析
Recent analysis of tidal triggering of earthquakes on mid-ocean ridge and geothermal field
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(20 Apr. 2023, 1567):
1. KOGI Keisuke(B4: Dr. SUZUKI in charge)
Li, Z., Zhang, Y.G., Torres, M. et al., 2023, Neogene burial of organic carbon in the global ocean. Nature 613, 90–95.
DOI: 10.1038/s41586-022-05413-6
2. YOSHIIKE Kanano (M1)
沿岸の侵食痕から過去の津波・ストーム 履歴を復元する
Sawai Y. Tamura T. Shimada Y. and Tanigawa K., 2023, Scour ponds from unusually large tsunamis on a beach ridge plain in eastern Hokkaido Japan. Sci Rep. 13 3064.
DOI: 10.1038/s41598-023-30061-9
Pitman, S. J., Jol, H. M., Shulmeister, J., and Hart, D. E., 2019, Storm response of a mixed sand gravel beach ridge plain under falling relative sea levels: A stratigraphic investigation using ground penetrating radar. Earth Surf. Process. Landforms, 44: 1610– 1617.
DOI: 10.1002/esp.4598
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––