Archives(2020-)
発表次第(26 Dec. 2024, 1607):
1. KANTSUKA Tomoya (B3: Prof. MUTO in charge)
高い間隙水圧を必要としない新しい弱断層モデル
(New weak fault model that does not require high pore pressure)
Y. Iio, 2024. New weak fault model that does not require high pore pressure. Earth and Planetary Science Letters, Volume 646, id.119003.
DOI: 10.1016/j.epsl.2024.119003
2. TSUTSUI Kyosuke (B3: Dr. SUZUKI in charge)
ジュラ紀の化石から明らかになった、初期の哺乳類の長期的な生活史
(Jurassic fossil juvenile reveals prolonged life history in early mammals)
Panciroli et al. 2024. Jurassic fossil juvenile reveals prolonged life history in early mammals. Nature 632, 815-822.
DOI: 10.1038/s41586-024-07733-1
3. KAWATAKE Kazuho (M1)
天文年代測定による白亜紀前期アプチアン期の年代決定
Charbonnier G., Boulila S., Spangenberg J. E., Vermeulen J., Galbrun B., 2024. Astrochronology of the Aptian stage and evidence for the chaotic orbital motion of Mercury. Earth and Planetary Science Letters, 610, 118104.
DOI: 10.1016/j.epsl.2023.118104
C. G. Leandro, J. F. Savian, M. V. L. Kochhann, D. R. Franco, R. Coccioni, F. Frontalini, S. Gardin, L. Jovane, M. Figueiredo, L. R. Tedeschi, L. Janikian, R. P. Almeida, R. I. F. Trindade, 2022, Astronomical tuning of the Aptian stage and its implications for age recalibrations and paleoclimatic events. Nature communication, 13, 2941.
DOI: 10.1038/s41467-022-30075-3
4. WAKO Ryota (D1)
レニウム-オスミウム(Re-Os)年代測定法の原油試料への応用
(Applications of rhenium-osmium (Re-Os) geochronology to crude oil samples)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(19 Dec. 2024, 1606):
1. ARAI Yu (B3: Dr. YAMADA in charge)
K-Pg境界直後約3万年間における年平均気温の安定的低下
O’Connor, L. K., et al., 2023. Steady decline in mean annual air temperatures in the first 30 k.y. after the Cretaceous-Paleogene boundary: Geology, 51, 486–490,
DOI: 10.1130/G50588.1
2. TAKEDA Atae (M1)
コンピューターシミュレーションを用いたドロマイト化における地球化学的プロセスの解明―地下深部埋蔵炭酸塩層の温度条件に関する研究例―
Joonsoo Kim, Yuki Kimura, Brian Puchala, Tomoya Yamazaki, Udo Becker, Wenhao Sun (2023) “Dissolution enables dolomite crystal growth near ambient conditions”, Science, 382.
Leilei Yang, Linjiao Yu, Keyu Liu, Jihui Jia, Guangyou Zhu, Qi Liu (2022) “ Coupled effects of temperature and solution compositions on metasomatic dolomitization: Significance and implication for the formation mechanism of carbonate reservoir”, Journal of Hydrology, 604.
DOI: 10.1016/j.jhydrol.2021.127199
Guangyou Zhu, Zhenlum Wei, Xiaoyong Wu, Yubiao Li (2023) “New insights into the dolomitization and dissolution mechanisms of dolomite–calcite (104)/(110) crystal boundary: An implication to geologic carbon sequestration process, Science of the Total Environment, 904.
DOI: 10.1016/j.scitotenv.2023.166273
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(12 Dec. 2024, 1605):
1. TAKEDA Ryo (B3: Dr. SUGAWARA in charge)
海洋に流入する火山噴火によって生じる高速で破壊的な密度流
(Fast and destructive density currents created by ocean-entering volcanic eruptions)
Clare, M. A. et al., 2023. Fast and destructive density currents created by
ocean-entering volcanic eruptions. Science 381, 1085–1092.
2. TSUKAHARA Tomoshi (B3: Dr. KUROYANAGI in charge)
Feng et al., 2024. High extinction risk in large foraminifera during past and future mass extinctions Sci. Adv. 10, eadj8223.
3. OISHI Akihiro (M1)
Cnacelled!
4. KITA Yukiko (D1)
粒成長速度論に影響する諸要素
(Factors that affect grain growth kinetics)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(5 Dec. 2024, 1604):
1. OYAMA Kakeru (B3: Dr. ASAMI in charge)
トルコの石筍に記録された最終氷期と最後から2 番目の氷期におけるD-O サイクル(Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye)
Held, F., Cheng, H., Edwards, R.L. et al., 2024. Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye. Nat Commun 15, 1183.
DOI: 10.1038/s41467-024-45507-5
2. WATANABE Kakeru (B3: Prof. TAKASHIMA in charge)
The early opening of the Equatorial Atlantic gateway and the evolution of Cretaceous peak warming
Dummann, W., et al., 2023. The early opening of the Equatorial Atlantic gateway and the evolution of Cretaceous peak warming: Geology, 51, 476–480.
DOI: 10.1130/G50842.1
3. HORIKAMI Shunnosuke (M1)
化石サンゴを用いた古環境変動に関する研究
(Introduction of research on paleoenvironmental changes from fossil coral skeletons)
Tao, S., Liu, K-b., Yan, H., Meng, M., Zhang, H., Wu, Y., Yu, K., Shi, Q., 2024. SST and ENSO activity 282,000 years ago reconstructed from Porites coral in the South China Sea. Global and Planetary Change, 237, 104455.
DOI:10.1016/j.gloplacha.2024.104455
Knebel, O., Felis, T., Asami, R., Deschamps, P., Kölling, M., Scholz, D., 2024. Last Deglacial Environmental Change in the Tropical South Pacific From Tahiti Corals. Paleoceanography and Paleoclimatology, 39.
4. YOSHII Kosuke (D1)
The late Miocene carbonate crashに関する研究レビュー
A review of recent research on the late Miocene carbonate crash
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––発表次第(28 Nov. 2024, 1603):
1. OHNO Yuu (B3: Dr. SUZUKI in charge)
ルテニウム同位体からチクシュルーブにおける衝突天体はC型小惑星であることが判明
(Ruthenium isotopes show the Chicxulub impactor was a carbonaceous-type asteroid)
Fischer-Godde et al., 2024. Ruthenium isotopes show the Chicxulub impactor was a carbonaceous-type asteroid. Science 385 (6710) 752-756.
2. SATO Kuga (B3: Prof. MUTO in charge)
地震がもたらす石英の圧電効果による金塊形成
(Gold nugget formation from earthquake-induced piezoelectricity in quartz)
Christopher R. Voisey et.al
Voisey, C.R., Hunter, N.J.R., Tomkins, A.G. et al., 2024. Gold nugget formation from earthquake-induced piezoelectricity in quartz. Nat. Geosci. 17, 920–925.
DOI: 10.1038/s41561-024-01514-1
3. OUCHI Sakurako (M1)
津波と洪水の極端な事象における堆積学的記録
(Sedimentary Records of Extreme Tsunami and Flood Events)
Araya, K., Dezileau, L., Muñoz, P., Maldonado, A., Condomines, M., Khalfaoui, O., Oyanadel-Urbina, P., and Araya, B. A., 2023. Reconstruction of extreme floods and tsunamis from coastal sedimentary archives in Los Choros, Coquimbo region, 28°S, Chile. Nat. Hazards, 120, 11323–11347.
DOI: 10.1007/s11069-024-06644-8
Yamada, M., Naruse, H., Kuroda, Y., Kato, T., Matsuda, Y., Shinozaki, T., and Tokiwa, T., 2021, Features of crevasse splay deposits and sedimentary processes associated with levee breaching due to the October 2019 flood of the Chikuma River, Central Japan. Nat. Hazards, 119, 95–124.
DOI: 10.1007/s11069-023-06122-7
4. Supadee Krisana (M1)
Recent research progress to understand the variation of East Asian Monsoon via the modulation of oscillating systems’ teleconnection and their mechanism frameworks
Hau, N.-X. et al. (2023) 'The modulation of Pacific Decadal Oscillation on ENSO-East Asian summer monsoon relationship over the past half-millennium,' The Science of the Total Environment, 857, p.159437.
DOI: 10.1016/j.scitotenv.2022.159437
Ma, T. and Chen, W. (2023) 'Recent progress in understanding the interaction between ENSO and the East Asian winter monsoon: A review,' Frontiers in Earth Science, 11.
DOI: 10.3389/feart.2023.1098517
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(21 Nov. 2024, 1602):
1. MURAMATSU Kotaro (B3: Dr. TAKAYANAGI in charge)
最終氷期極大期の北大西洋海流の深さと強さ
(Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum)
Wharton et al., 2024. Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum. Nature, 1–6.
DOI: 10.1038/s41586-024-07655-y
2. MUTO Monami (B3: Prof. TAKASHIMA in charge)
ケルゲレン火山活動により引き起こされたOAE2
(Oceanic Anoxic Event 2 triggered by Kerguelen volcanism)
Dummann, W., et al., 2023. The early opening of the Equatorial Atlantic gateway and the evolution of Cretaceous peak warming: Geology, v. 51, p. 476–480.
DOI: 10.1130/G50842.1
3. TAKENAWA Tomohiro (M1)
断層すべり面の形態とナノ粒子の存在について
Ortega-Arroyo, D., & Pec, M., 2023. A closer look into slickensides: Deformation on and under fault surfaces. Journal of Structural Geology, 171, 104860.
DOI: 10.1016/j.jsg.2023.104860
Huang, J., Zhang, B., Hu, W., Zou, J., He, H., & Zhang, J., 2024. Bonded nanoparticles restrengthen faults during earthquake slip. Journal of Structural Geology, 186, 105215.
DOI: 10.1016/j.jsg.2024.105215
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(14 Nov. 2024, 1601):
1. TSURUMACHI Yuki (B3: Dr. YAMADA in charge)
中国南部四川盆地の恐竜化石に対するU-Pb年代測定
Qi, L. et al., 2024. In situ U-Pb dating of Jurassic dinosaur bones from Sichuan Basin, South China. Geology, 52 (3): 216–221.
DOI: 10.1130/G51872.1
2. MIZUKI Yosuke (B3: Dr. SUGAWARA in charge)
近似ベイズ計算を利用したイースター島における古人口動態の分析
DiNapol, R. J. et al, 2021. Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island). NATURE COMMUNICATIONS, 12: 3939
DOI: 10.1038/s41467-021-24252-z
3. OISHI Akihiro (M2)
canceled !!
4. SHIMADA Tomoya (M2)
2008 年汶川地震 龍門山断層帯中の炭質物
(Carbonaceous materials in the Longmenshan fault zone of the 2008 Wenchuan earthquake)
Dang & Zhou, 2022, Structural fabrics of carbon grains in a natural fault gouge reactivated by the 2008 Wenchuan earthquake. Terra Nova 35, 2, 91-100.
DOI: 10.1111/ter.12633
Shi et al., 2024, Experimental investigation on the origin of carbonaceous materials in the fault zone of the Wenchuan earthquake. Earthquake Science 37, 189-199.
DOI: 10.1016/j.eqs.2024.03.001
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(7 Nov. 2024, 1600):
1. HAKUMURA Shu (B3: Dr. ASAMI in charge)
人新世の国際境界模式層断面(GSSP)の候補地点および参考地点
Waters, C. N., Turner, S. D., Zalasiewicz, J., & Head, M. J., 2023. Candidate sites and other reference sections for the Global boundary Stratotype Section and Point of the Anthropocene series. The Anthropocene Review, 10(1), 3-24.
DOI: 10.1177/20530196221136422
2. HASHIMOTO Yuri (M2)
環境DNA解析の浮遊性有孔虫研究への応用
(Application of environmental DNA analysis for planktonic foraminiferal research)
Pawłowska, J., Wollenburg, J. E., Zajączkowski, M., & Pawlowski, J., 2020. Planktonic foraminifera genomic variations reflect paleoceanographic changes in the Arctic: evidence from sedimentary ancient DNA. Scientific Reports, 10(1), 15102.
DOI: 10.1038/s41598-020-72146-9
Maeda, A., Nishijima, M., Iguchi, A., Ota, Y., Suzumura, M., & Suzuki, A., 2024. Environmental DNA metabarcoding of foraminifera for biological monitoring of bottom water and sediments on the Takuyo-Daigo Seamount in the northwestern Pacific. Frontiers in Marine Science, 10, 1243713.
DOI: 10.3389/fmars.2023.1243713
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(31 Oct. 2024, 1599):
1. MOTOKI Takumi (B3: Dr. KUROYANAGI in charge)
新生代の環境変化に対する海洋プランクトンの生物地理的応答
Swain, A., Woodhouse, A., Fagan, W.F. et al., 2024. Biogeographic response of marine plankton to Cenozoic environmental changes. Nature 629, 616–623.
DOI: 10.1038/s41586-024-07337-9
2. MITO Yuga (M2)
姶良カルデラのカルデラ形成噴火に至るマグマ系の発達に関する地球化学的研究
Geochemical research on the evolution of the magmatic system leading to a caldera-forming eruption of the Aira Caldera, Japan
Nobuo Geshi, Ikuko Yamada, Keiko Matsumoto, Ayumu Nishihara & Isoji Miyagi, 2020, Accumulation of rhyolite magma and triggers for a caldera-forming eruption of the Aira Caldera, Japan, Bulletin of Volcanology, Volume 82, article number 44
DOI: 10.1007/s00445-020-01384-6
Takeshi Kuritani, 2023, Geochemical constraints on the evolution of the magmatic system leading to catastrophic eruptions at Aira Caldera, Japan, Lithos, Volumes 450–451
DOI: 10.1016/j.lithos.2023.107208
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(17 Oct. 2024, 1598):
1. INOSE Daiki (M1)
津波堆積物の堆積学的・地球化学的特徴の紹介
(Introduction of sedimentological and geochemical characteristics of tsunami deposits)
後藤和久,菅原大助,2021,津波堆積学の進展.地質学雑誌,127,199–214
Matsumoto, D., Sawai, Y., Tanigawa, K., Namegaya, Y., Shishikura, M., Kagohara, K., Fujiwara, O., Shinozaki, T., 2023, Sedimentary diversity of the 2011 Tohoku-oki tsunami deposits on the Sendai coastal plain and the northern coast of Fukushima Prefecture, Japan. Progress in Earth and Planetary Science, 10:23, 1-30
Nanayama, F., Shigeno, K., Satake, K., Shimokawa, K., Koitabashi, S., Miyasaka, S., Ishii, M., 2000, Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sedimentary Geology, 135, 255–264.
Ratnayake, A.S., Wijewardhana, T.D.U., Haraguchi, T., Goto, K., Ratnayake, N.P., Tetsuka, H., Yokoyama, Y., Miyairi, Y., Attanayake, A.M.A.N.B, 2023, Sedimentological observations and geochemical characteristics of paleo-tsunami deposits along the east coast of Sri Lanka in the Indian Ocean. Quaternary International, 661, 49-59
澤井祐紀,2012,地層中に存在する古津波堆積物の調査.地質学雑誌,118,535–558.
2. TOMARU Taiga (D1)
白亜紀前期の古環境変動に関する研究の紹介
(Introduction of research on early cretaceous environmental changes)
Erba et al., 2004, Geology, 32(2), 149-152.
Westermann et al., 2010, EPSL, 290(1-2), 118-131.
Cavalheiro et al., 2021, Nature communications, 12(1), 5411.
Martinez et al, 2023, Earth-Science Reviews, 104356.
Percival et al., 2023, Geology ,51(8): 753-757.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(25 July 2024, 1597):
1. YOKOYAMA Hiroaki (D3)
HR-EBSD による地質学的物質の解析例の紹介
(Introduction of examples of analysis of geological materials by HR-EBSD)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(11 July 2024, 1596):
1. TSUJIMOTO Daiki (M1)
中期中新世,九州パラオ海嶺はどこにあったのか?
(Where was the Kyushu-Palau Ridge in the Middle Miocene?)
Shinjoe et al., 2023, Geochronological and petrological investigations of Miocene felsic igneous rocks in the Amakusa Islands, southwest Japan: Possible extension of the Setouchi Volcanic Belt, Island Arc, 33 (1) e12506.
Motohashi et al., 2023, Middle Miocene forearc alkaline magmatism in Amami-Oshima Island, central Ryukyu Arc: implications for paleoreconstruction of Shikoku Basin, Earth, Planets and Space volume 75, Article number: 9.
DOI : 10.1186/s40623-021-01490-5
2. FURUKAWA Miho (D2)
地球科学におけるグラフ理論とその応用
(Graph theory and its applications in earth sciences)
Tang, Y.B., Zhao, J.Z., Bernabé, Y., Li, M., 2021. Fluid flow concentration on preferential paths in heterogeneous porous media: Application of graph theory. Journal of Geophysical Research: Solid Earth 126, e2021JB023164.
Dunant, A., Bebbington, M., Davies, T., 2021. Probabilistic cascading multi-hazard risk assessment methodology using graph theory, a New Zealand trial. International Journal of Disaster Risk Reduction 54, 102018.
DOI:10.1016/j.ijdrr.2020.102018
Jones, R., Safta, C., Frankel, A., 2023. Deep learning and multi-level featurization of graph representations of microstructural data. Computational Mechanics 72, 57–75.
DOI:10.1007/s00466-023-02300-3
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(4 July 2024, 1595):
1. TAKAHASHI Kousuke (B4: Dr. ASAMI in charge)
氷期の海水準変動に伴う千年スケールでの秋季東南アジアモンスーン降雨の変動
Patterson, Elizabeth W, et al., 2023. Glacial changes in sea level modulated millennial-scale variability of Southeast Asian autumn monsoon rainfall
Glacial changes in sea level modulated millennial-scale variability of Southeast Asian autumn monsoon rainfall. PNAS, 120 (27), e2219489120.
DOI : 10.1073/pnas.2219489120
2. NAKANO Sota (M1)
粒度分析と順解析を組み合わせた津波堆積物研究の紹介
(Introduction of tsunami deposit research combining grading analysis and forward modeling)
Bosnic, I., Costa, P.J.M., Dourado, F., La Selle, S., Gelfenbaum, G., 2021. Onshore flow characteristics of the 1755 CE Lisbon tsunami: linking forward and inverse numerical modeling. Mar. Geol. 434, 106432.
DOI: 10.1016/j.margeo.2021.106432
Hill, J., Rush, G., Peakall, J., Johnson, M., Hodson, L. & Barlow, N., 2023. Resolving tsunami wave dynamics: Integrating sedimentology and numerical modelling. Depositional Record. 9, 1046-1065.
DOI: 10.1002/dep2.247
3. TAMIGAWA Daichi (M2)
テフラの主成分元素組成・微量元素組成による識別・対比
(Identification and correlation of tephra by major and trace element composition)
Tabito Matsu’ura., Junko Komatsubara., Minoru Ikehara., 2023, Improving tephrostratigraphy and cryptotephrostratigraphy since 1 Ma of Hole U1437B in the Izu-Bonin arc, NW Pacific: Differentiation of widespread tephras with similar shard chemistries. Quaternary Science Reviews, 319, 108305.
DOI: 10.1016/j.quascirev.2023.108305
Tabito Matsu’ura., Junko Komatsubara., 2024, Ontake-Katamachi tephra: Marine-terrestrial correlation of a time marker of marine isotopic stage 5b in NE Japan, the Japan Sea, and the NW Pacific. Journal of Asian Earth Sciences, 259, 105876.
DOI: 10.1016/j.jseaes.2023.105876
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(27 June 2024, 1594):
1. MARUO Mizuki (B4: Prof. MUTO in charge)
巨大地震における地震後・地震間の地殻変動の移り変わりにはどれほど時間がかかるのか。包括的な地震サイクルの視点に向けた研究
Shaoyang Li & Ling Chen, 2023. How Long Can the Postseismic and Interseismic Phases of Great Subduction Earthquake Sustain? Toward an Integrated Earthquake-Cycle Perspective. Geophysical Research Letters, e2023GL103976.
DOI : 10.1029/2023GL103976
2. TAKAHASHI Keigo (B4: Dr. SUZUKI in charge)
ユニークに保存された消化管の内容物から, 三葉虫の古生理学が解明される
JPetr Kraft, Valéria Vaškaninová, Michal Mergl, Petr Budil, Oldřich Fatka & Per E. Ahlberg, 2023. Uniquely preserved gut contents illuminate trilobite palaeophysiology. Nature, 622, 545–551.
DOI: 10.1038/s41586-023-06567-7
3. TOGASHI Kotomi (M2)
鉱物の化学組成からマグマを推測する
(Evaluate magma systems based on chemical compositions of minerals)
Chen Z. et al., 2020. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales, Lithos, 376–377, 105776.
DOI: 10.1016/j.lithos.2020.105776
Hao L. et al., 2024. Diverse apatite geochemical compositions in early Paleozoic granitoids of the North Qinling orogen, China: Insights into their petrogenesis and magma sources, Lithos, 480–481, 107663.
DOI: 10.1016/j.lithos.2024.107663
4. YOKOYAMA Hiroaki (D3) Canceled!
HR-EBSD による地質学的物質の解析例の紹介
(Introduction of examples of analysis of geological materials by HR-EBSD)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(20 June 2024, 1593):
1. MIKAMI Yuya (B4: Dr. SUGAWARA in charge)
南極大陸における氷河崩壊に伴う内部津波発生と海洋混合
Meredith, M. P., Inall, M. E., Brearley, J. A., Ehmen, T., Sheen, K., Munday, D., et al., 2022. Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica. Science Advances, 8(47), eadd0720.
DOI : 10.1126/sciadv.add0720
2. OUE Yuta (B4: Dr. KUROYANAGI in charge)
プランクトンの生物地理学から明らかになった氷河期北大西洋の強い温度勾配
Jonkers, L., Laepple, T., Rillo, M.C. et al., 2023. Strong temperature gradients in the ice age North Atlantic Ocean revealed by plankton biogeography. Nat. Geosci. 16, 1114–1119.
DOI: 10.1038/s41561-023-01328-7
3. TSUCHIYA Mayu (M2)
地震活動に関連したラドン濃度異常の様々な検知手法
(Radon concentration anomalies in water and soil associated with seismic activity)
Chetia, T., Baruah, S., Dey, C. et al., 2022. Seismic induced soil gas radon anomalies observed at multiparametric geophysical observatory, Tezpur (Eastern Himalaya), India: an appraisal of probable model for earthquake forecasting based on peak of radon anomalies. Nat. Hazards. 111, 3071–3098.
DOI: 10.1007/s11069-021-05168-9
Soldati, G., Cannelli, V. & Piersanti, A., 2020. Monitoring soil radon during the 2016–2017 central Italy sequence in light of seismicity. Sci Rep 10, 13137.
DOI: 10.1038/s41598-020-69821-2
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(6 June 2024, 1592):
1. UMAKOSHI Hiroki (B4: Dr. SUZUKI in charge)
雲霧林における植物分岐群の反復放散
Donoghue, M. J., et al., 2022. Replicated radiation of a plant clade along a cloud forest archipelago. Nature Ecology & Evolution, 6, 1318–1329.
DOI: 10.1038/s41559-022-01823-x
2. HARA Yusuke (B4: Dr. TAKAYANAGI in charge)
天⽂学的に較正した過去6600 万年間を通じた地球の気候記録とその予測可能性
Westerhold, T., et al., 2020. An astronomically dated record of earth’s climate and its predictability over the last 66 million years. Science, 369, 1383-1387.
3. YOSHIBE Momo (M2)
浅海炭酸塩堆積物の堆積史に関する研究
(Study on the depositional history of shallow water carbonates sediments)
Murray, S. T., et al., 2020. Geochemical fingerprints of dolomitization in Bahamian carbonates: Evidence from sulphur, calcium, magnesium and clumped isotopes. Sedimentology.
Smith, M. E. & Swart, P. K., 2022. The influence of diagenesis on carbon and
oxygen isotope values in shallow water carbonates from the Atlantic and Pacific:
Implications for the interpretation of the global carbon cycle. Sedimentary Geology.
DOI:10.1016/j.sedgeo.2022.106147
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(23 May 2024, 1591):
1. OGITA Kosei (B4: Dr. YAMADA in charge)
棘皮動物の進化の原動力としての方解石-アラゴナイトの海とは? ~実験的見識とディープタイム・デカップリング~
Cole, S.R., et al., 2023. Calcite-aragonite seas as a driver of echinoderm evolution? Experimental insight and deep-time decoupling: Geology, v. 51, p. 1091–1095.
DOI: 10.1130/G51444.1
2. HARIGAI Shunto (B4: Dr. SUGAWARA in charge)
Cardenas, B. T., et al., 2022. Martian landscapes of fluvial ridges carved from ancient sedimentary basin fill. Nature Geoscience, v. 15, p. 871–877.
DOI: 10.1038/s41561-022-01058-2
3. KOGI Keisuke (M1)
実験で得られた、地震本震前に確認されるb値の減少メカニズム
(Experimentally confirmed mechanism of decrease in b-value before the main shock of the earthquake)
Bolton, D.C., Shreedharan, S., Rivière, J., Marone, C., 2021. Frequency-magnitude statistics of laboratory foreshocks vary with shear velocity, fault slip rate, and shear stress. J. Geophys. Res., Solid Earth 126, e2021JB022175.
DOI: 10.1029/2021JB022175
Yamashita, F., Fukuyama, E., Xu, S., Kawakata, H., Mizoguchi, K., & Takizawa, S., 2021. Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault. Nature Communications, 12(1), 4302.
DOI: 10.1038/s41467-021-24625-4
4. HOSOGAYA Kohei (D2)
海洋無酸素事変と大規模火成活動の関係:鉛同位体比とオスミウム同位体比による海洋無酸素事変1aと超オントンジャワの解析
(Relationship between Ocean Anoxic Event 1a and Large Igneous Provinces : Ocean Anoxic Event 1a and Ontong Java Nui based on lead isotope and osumium isotope analysis)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(16 May 2024, 1590):
1. AKIOKA Soma (B4: Dr. TAKAYANAGI in charge)
Stukel, M. R., et al., 2023, Carbon sequestration by multiple biological pump pathways in a coastal upwelling biome, nature communications, 14.
DOI: 10.1038/s41467-023-37771-8
2. HARA Kairi (B4: Dr. YAMADA in charge)
Lebrec, U., et al., 2023, Discovery of Holocene ooid shoals in a siliciclastic delta, De Grey River, North West Shelf, Australia: Geology, v. 51, p. 366–371.
DOI: 10.1130/G50840.1
3. MIURA Akito (M1)
地下水中ラドン濃度変動の時系列解析(Time series analysis of groundwater radon concentration variations)
Zhao, Y., et al., 2021, A case study of 10 years groundwater radon monitoring along the eastern margin of the Tibetan Plateau and in its adjacent regions: Implications for earthquake surveillance. Appl. Geochem., 131, 105014.
DOI: 10.1016/j.apgeochem.2021.105014
Fu, H. and Hu, X., 2022, Identification of groundwater radon precursory anomalies by critical slowing down theory. water, 14, 541.
DOI: 10.3390/w14040541
4. YOSHIIKE Kanano (M2)
完新世堆積物の調査におけるGPR活用方法の課題と改善
Buck, L. and Bristow, C. S., 2024, Using ground-penetrating-radar to investigate deposits from the Storegga slide tsunami and other sand sheets in the Shetland Island, UK. Journal of the Geological Society, 181.
DOI: 10.1144/jgs2023-042
Cavallotto, J. L., et al., 2020, Shallow geophysical methods for recognition of holocene sedimentary sequences in the southern coastal plain of the Río de la Plata (Argentina). Journal of South American Earth Sciences, 102, 102662.
DOI: 10.1016/j.jsames.2020.102662
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(25 Apr. 2024, 1589):
1. NAKAMURA Hibiki (B4: Prof. MUTO in charge)
Toffol, G. et al., 2024. On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault. Sci. Adv., 10, eadi8533.
2. YAMAGISHI Komei (B4: Dr. KUROYANAGI in charge)
Hupp, B. N., Kelly, D. C. and Williams, J. W., 2022, Isotopic filtering reveals high sensitivity of planktic calcifiers to Paleocene-Eocene thermal maximum warming and acidification. PNAS, 119, e2115561119.
3. YAMASHITA Tomohiro (B4: Dr. ASAMI in charge)
McCulloch, M.T., Winter, A., Sherman, C.E. et al., 2024. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C. Nat. Clim. Chang. 14, 171–177.
DOI: 10.1038/s41558-023-01919-7
4. ODA Hiroto (M2)
古環境指標としてのシャコガイ研究:現状と課題
Giant clam shells as a paleoclimate proxy in the 2000s
Elliot, M., Welsh, K., Chilcott, C., McCulloch, M., Chappell, J. and Ayling, B., 2009: Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: potentialapplications in paleoclimate studies. Palaeogeography, Palaeocli- matology, Palaeoecology, vol.280, p. 132–142.
Liu, C., Yan, H., Wang, G., Zhao, L., Hu, Y., Zhou, P., Luo, F., Yang, H., Dodson, J., 2021. Species specific Sr/Ca-δ18O relationships for three Tridacnidae species from the northern South China Sea.
Chem. Geol. 584, 120519
https://doi.org/10.1016/j. chemgeo.2021.120519.
Yan, H., Shao, D., Wang, Y. and Sun, L., 2013: Sr/Ca profile of long- lived Tridacna gigas bivalves from South China Sea: A new high- resolution SST proxy. Geochimica et Cosmochimica Acta, vol.112, p. 52–65.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(18 Apr. 2024, 1588):
1. NAKAMURA Hibiki(B4: Prof. MUTO in charge)→Postponed to April 25
Toffol, G. et al., 2024. On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault. Sci. Adv., 10, eadi8533.
2. KAJIMURA Kenta (B4: Prof. TAKASHIMA in charge)
During, M. A. D., et al., 2022. The Mesozoic terminated in boreal spring. Nature, 603, 91–94.
DOI: 10.1038/s41586-022-04446-1
3. SATO Yuito (M2)
粒子形状解析を活用したイベント堆積物の側方対比及び供給源推定
Lateral correlation and sediment source estimation of event deposits using particle shape analysis.
Ishimura D. & Yamada K., 2021. Integrated lateral correlation of tsunami deposits during the last 6000 years using multiple indicators at Koyadori, Sanriku Coast, northeast Japan. Quat. Sci. Rev., 256, 106834.
DOI: 10.1016/j.quascirev.2021.106834
Gresina, F. et al., 2023. Morphological analysis of mineral grains from different sedimentary environments using automated static image analysis. Sediment. Geol., 455, 106479.
DOI: 10.1016/j.sedgeo.2023.106479
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(11 Apr. 2023, 1587)
1. MIKAMI Yuya (B4: Dr. YAMADA in charge)
Spötl, C., et al. (2021) Stable isotope imprint of hypogene speleogenesis: Lessons from Austrian caves. Chemical Geology, 572, 120209.
DOI: 10.1016/j.chemgeo.2021.120209
2. MARUO Mizuki (B4: Dr. SUZUKI in charge)
Brocks, J. J., et al. (2023) Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773 .
DOI:10.1038/s41586-023-06170-w
3. MASUDA Hidetoshi (D1)
Generation, propagation, inundation, and sediment transport processes of the tsunami following the 2024 Noto Peninsula earthquake
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(12 Jan. 2023, 1565):
1. HORIKAMI Shunnosuke(B3: Dr. SAWA in charge)
Coppa et al. (2022) Fluid migration in low-permeability faults driven by decoupling of fault slip and opening. Nature geoscience.
DOI: 10.1038/s41561-022-00993-4
2. NAKANO Sota (B3: Prof. IRYU in charge)
南シナ海のサンゴ礁の形成と発展
(Formation and development of coral reefs in the South China Sea)
Formation and development of coral reefs in the South China Sea. Palaeogeography Palaeoclimatology Palaeoecology. 594, 110957.
DOI:10.1016/j.palaeo.2022.110957
3. NAKAZAWA Tatsuki (B3: Prof. MUTO in charge)
天然のアンチゴライト蛇紋岩のレオロジー:マントル境界下での歪と歪速度の依存性
Tulley et al., 2022. Rheology of Naturally Deformed Antigorite Serpentinite: Strain and Strain-Rate Dependence at Mantle-Wedge Conditions. Geophysical Research Letters, 49, e2022GL098945.
DOI: 10.1029/2022GL098945
4. NAGAFUCHI Haruya (M1)
シャコガイ殻を用いた古環境復元の研究
Study of paleoenvironmental restoration using Tridacna spp. shells
1) Xiaolin M., Hong Y., Haobai F., Chengcheng L., Ge S., Enqing H., Yue W., Xiaoli Q., Ergang L. and Haowen D. (2020) A high-resolution δ18O record of modern Tridacna gigas bivalve and its paleoenvironmental implications, Palaeogeography, Palaeoclimatology, Palaeoecology, 554, 109800.
DOI: 10.1016/j.palaeo.2020.109800
2) Yue H., Xiaoming S., Hai C. and Hong Y. (2020) Evidence from giant-clam δ18O of intense El Ninõ–Southern Oscillation-related variability but reduced frequency 3700 years ago, Clim. Past, 16, 597–610.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(5 Jan. 2023, 1564):
1. NISHIYOSHI Daigo(B3: Prof. TAKASHIMA in charge)
Junichiro Kuroda, Kyoko Hagino, Yoichi Usui, Paul R. Bown, Kan-Hsi Hsiung, Saburo Sakai, Ron Hackney, Saneatsu Saito, Masafumi Murayama, Takuto Ando, Naohiko Ohkouchi. 2022. Stratigraphy around the Cretaceous-Paleogene boundary in sediment cores from the Lord Howe Rise, Southwest Pacific. GSA Bulletin, 134 (5-6): 1603–1613.
DOI: 10.1130/B36112.1
2. KITA Yukiko (M1)
フェーズフィールド法を用いた多結晶体の粒成長シミュレーション
Phase-field simulation of grain growth in polycrystalline.
Miyoshi, E. and Takaki, T., Multi-phase-field study of the effects of anisotropic grain-boundary properties on polycrystalline grain growth. J. Cryst. Growth, 474, 160-165 (2017).
DOI: 10.1016/j.jcrysgro.2016.11.097
Kundin, J., Almeida, R.S.M., Salama, H., Farhandi, H., Tushtev, K. and Rezwan, K., Phase-field simulation of abnormal anisotropic grain growth in polycrystalline ceramic fibers. Comput. Mater. Sci., 185, 109926 (2020).
DOI: 10.1016/j.commatsci.2020.109926
3. YOKOYAMA Hiroaki (D1)
炭質物のラマン分光法:地質温度計への適用と変形の影響
Raman Spectroscopy of Carbonaceous Materials - Application to the Geothermometer and Effects of Deformation -
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––発表次第(22 Dec. 2022, 1563):
1. TSUJIMOTO Daiki(B3: Dr. TAKAYANAGI in charge)
A deep Tasman outflow of Pacific waters during the last glacial period.
Torben Struve, David J. Wilson, Sophia K. V. Hines, Jess F. Adkins, and Tina van de FlierdtT, 2022, A deep Tasman outflow Pacific waters during the last glacial period. Nature Communications, 13. Article Number: 3763.
DOI: 10.1038/s41467-022-31116-7
2. HOSHINO Akimitsu (M2)
OAE2区間の古環境変動
(Paleoenvironmental variability in OAE2 interval)
Carolina Fonseca, João Graciano Mendonça Filho, Carine Lézin, Luís V. Duarte, 2020. Organic facies variability and paleoenvironmental changes on the Moroccan Atlantic coast across the Cenomanian—Turonian Oceanic Anoxic Event (OAE2), International Journal of Coal Geology, 230.
DOI: 10.1016/j.coal.2020.1035872
Yong-Xiang Li, Benjamin Gill, Isabel P. Montañez, Lifeng Ma, Matthew LeRoy, Kenneth P. Kodama, 2020. “Orbitally driven redox fluctuations during Cretaceous Oceanic Anoxic Event 2 (OAE2) revealed by a new magnetic proxy”, Palaeogeography, Palaeoclimatology, Palaeoecology, 538.
DOI: 10.1016/j.palaeo.2019.109465
3. NISHIO Takuya (D3)
腕足動物殻のMg/Ca 比へのS の影響
(The effects of sulfur on Mg/Ca of brachiopod shells)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(15 Dec. 2022, 1562):
1. Dr. SUZUKI Katsuhiko(JAMSTEC)
総合科学としての海底資源研究:その成り立ち,探す方法,そして環境影響評価
2. TAKENAWA Tomohiro (B3: Dr. KUROYANAGI in charge)
新生代の温暖期における海洋酸素濃度増加
(Enhanced ocean oxygenation during Cenozoic warm periods)
Alexandra Auderset, et al., 2022. Enhanced ocean oxygenation during Cenozoic warm periods. Nature, 609, 77–82.
DOI: 10.1038/s41586-022-05017-0
3. TOGASHI Kotomi (B3: Dr. YAMADA in charge)
メキシコ、セノーテ・ザポーテにおけるバブルトレイルとフォリアについて
(Bubble trail and folia in cenote Zapote, México: petrographic evidence for abiotic precipitation driven by CO2 degassing below the water table)
Rafael López-Martínez et al., 2020. Bubble trail and folia in cenote Zapote, México: petrographic evidence for abiotic precipitation driven by CO2 degassing below the water table. Int. J. Speleol, 49, 173-186.
DOI: 10.5038/1827-806X.49.3.2344
4. KAWABATA Mikihiro (M2)
含水鉱物の脱水反応速度論の違い
(The differences in dehydration kinetics of hydrous minerals)
Liu, C. et al., 2018. An in situ kinetic study of the dehydration of brucite using synchrotron X-ray powder diffraction. Can Mineral 56, 101–108.
Liu, T., Wang, D., Shen, K., Liu, C. & Yi, L., 2019. Kinetics of antigorite dehydration: Rapid dehydration as a trigger for lower-plane seismicity in subduction zones. American Mineralogist 104, 282–290.
DOI: 10.2138/am-2019-6805
5. OIKAWA Kazuma (D2)
Clumped-isotope thermometerの標準化手法と生物源炭酸塩への応用
(Standardization method of the Clumped-isotope thermometer and its application to biogenic carbonates)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(08 Dec. 2022, 1561):
1. SAITO Marin (B3: Dr. SUGAWARA in charge)
How is a turbidite actually deposited?
Ge et al., 2022, Science Advances 8, eabl9124.
2. TAKEDA Atae (B3: Dr. KUROYANAGI in charge)
古⽣物学的視点で予測する将来の海洋⽣物相
(Paleobiology provides glimpses of future ocean)
Moriaki Yasuhara & Curtis A. Deutsch, 2022. Paleobiology provides glimpses of future ocean: Fossil records from tropical oceans predict biodiversity loss in a warmer world. Science, 375, 25‒26.
Renato Salvatteci, Ralph R. Schneider, Eric Galbraith, David Field, Thomas Blanz,
Thorsten Bauersachs, Xavier Crosta, Philippe Martinez, Vincent Echevin, Florian Scholz & Arnaud Bertrand, 2022. Smaller fish species in a warm and oxygen-poor Humboldt Current system. Science, 375, 101‒104.
3. ARAKANE Miki (M1)
ラマン分光法 鉱物組成とスペクトル変化
(Raman Spectroscopy -Spectral Variation by Mineral Composition-)
Kim, Y., Caumon, M. C., Barres, O., Sall, A. and Cauzid, J., 2021, Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 261, 119980.
DOI: 10.1016/j.saa.2021.119980
Murphy, A. E., Jakubek, R. S., Steele, A., Fries, M. D. and Glamoclija, M., 2021, Raman spectroscopy provides insight into carbonate rock fabric based on calcite and dolomite crystal orientation, Journal of Raman Spectroscopy, 52(6), 1155-1166.
DOI: 10.1002/jrs.6097
4. Erick R. Velasco-Reyes (D2)
Using Bayesian Analysis for sediment source identification.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(24 Nov. 2022, 1560):
1. TANAKA Shunsuke (B4: Prof. IRYU in charge)
有孔虫δ¹⁸Oから推定される過去9500万年にわたる緯度温度勾配とその気候依存性
(The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years)
Gaskell, D. E., Huber, M., O’Brien, C. L., Inglis, G. N., Acosta, R. P., Poulsen, C. J., & Hull, P. M. (2022). The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proceedings of the National Academy of Sciences, 119(11), e2111332119.
2. KOGI Keisuke (B3: Dr. ASAMI in charge)
オーストラリア南西部の石筍から復元された、過去の火災の前後の影響
(Past fires and post-fire impacts reconstructed from a southwest Australian stalagmite)
Geochimica et Cosmochimica Acta, Volume 325, 15 May 2022, Pages 258-277
DOI: 10.1016/j.gca.2022.03.020
3. MURAKAMI Issei (M1)
白亜紀の浮遊性有孔虫の巻の向きは環境指標となりうるか
(Can coiling direction of Cretaceous planktonic foraminifera be an environmental proxy?)
Delphine Desmares, Marc Testé, Bérengère Broche, Maxime Tremblin, Silvia Gardin, Loïc Villier, Edwige Masure, Danièle Grosheny, Nicolas Morel, Patrice Raboeuf, 2020, High-resolution biostratigraphy and chemostratigraphy of the Cenomanian stratotype area (Le Mans, France), Cretaceous Research, 106, 104198.
DOI: 10.1016/j.cretres.2019.104198
Karima Ouikene, Delphine Desmares, Silvia Gardin, Fatiha Benkherouf-Kechid, Jérémie Bardin, 2022, Biostratigraphic and chemostratigraphic record of the Cenomanian/Turonian boundary interval of the Tellian Atlas (Algeria), Cretaceous Research, 138, 105264.
DOI: 10.1016/j.cretres.2022.105264
4. WATANABE Kaito (M1)
動的再結晶の粒径と応⼒計の発展
(The development of dynamic recrystallized grain size and piezometer)
Speciale, P. A., Tokle, L. and Behr, W. M., 2022, Feldspar and orthopyroxene piezometers constrained using quartz-feldspar and olivine-orthopyroxene mineral pairs from natural mylonites. Jour. Struct. Geol., 154, 104495.
DOI: 10.1016/j.jsg.2021.104495
Goddard, R. M., Hansen, L. N., Wallis, D., Stipp, M., Holyoke Ⅲ, C. W., Kumamoto, K.M. and Kohlstedt, D. L., 2020, A subgrain-size piezometer calibrated for EBSD. Geophys. Res. Lett., 47, e2020GL090056.
DOI: 10.1029/2020GL090056
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(17 Nov. 2022, 1559):
1. Dr. SAITO Megumi (National Museum of Nature and Science,Tokyo)
(斎藤めぐみ博士,国立科学博物館)
「研究機関におけるダイバーシティ・インクルージョン」
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(10 Nov. 2022, 1558):
1. KAWASHIMA Hana (B3: Dr. SUZUKI in charge)
有胎盤哺乳類に⾒られる⽣存戦略の⼀考察
(The origin of placental mammal life histories)
Gregory F. Funston, et al., 2022. The origin of placental mammal life histories, Nature 610, 107-111.
DOI: 10.1038/s41586-022-05150-w
2. KAWATAKE Kazuho (B3: Dr. SAWA in charge)
アウターライズ領域における脆性延性損傷による大規模なスラブのセグメンテーション
(Dynamic slab segmentation due to brittle-ductile damage in the outer rise)
Gerya, T. V., Bercovici, D. & Becker, T. W., 2021. Dynamic slab segmentation due to brittle–ductile damage in the outer rise. Nature 599, 245–250.
DOI: 10.1038/s41586-021-03937-x
3.HOSODA Akane (M1)
北太平洋西部における数十年規模変動
(Decadal variation in the western North Pacific)
Yimin Zhang, Zhonghua Zhao, Enhui Liao and Yuwu Jiang, 2022, ENSO and PDO-related interannual and interdecadal variations in the wintertime sea surface temperature in a typical subtropical strai, Clim. Dyn., 59, 3359–3372.
DOI: 10.1007/s00382-022-06270-9
Yifei Dai, Bin Wang, Na Wei, Jinjie Song and Yihong Duan, 2022, How has the North Pacific Gyre Oscillation affected peak season tropical cyclone genesis over the western North Pacific from 1965 to 2020?, Environ. Res. Lett., 17, 104016.
4. HASUNUMA Ryoto (M2)
放散虫の形態的特徴
(Morphological characteristics of Radiolaria)
Ichinohe, R., Shiino, Y. and Kurihara, T., 2018, The passive spatial behaviour and feeding model of living nassellarian radiolarians: Morpho-functional insights into radiolarian adaptation. Marine Micropaleontology, 140, 95–103
DOI: 10.1016/j.marmicro.2018.02.002
Ichinohe, R., Shiino, Y., Kurihara, T. and Kishimoto, N., 2019, Active floating with buoyancy of pseudopodia vs passive floating by hydrodynamic drag force: A case study of the flat-shaped spumellarian radiolarian Dictyocoryne. Paleontological Research, 23, 236–244
DOI: 10.2517/2018PR023
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––発表次第(27 Oct. 2022, 1557):
1. OUCHI Sakurako (B3: Prof. IRYU in charge)
北部南シナ海におけるサンゴ骨格δ88Srの古気候プロキシとしての評価
(Evaluation of coral skeletal δ88Sr as a paleoclimate proxy in the northern South China Sea)
Yuxuan Wei, Wenfeng Deng, Jinlong Ma, Xuefei Chen, Ti Zeng, Gangjian Wei
Palaeogeography, Palaeoclimatology, Palaeoecology 592 (2022) 110906
https://doi.org/10.1016/j.palaeo.2022.110906
DOI: 10.1016/j.palaeo.2022.110906
2. WAKO Ryota (M2)
南大洋における海洋フロントの南北移動
(North-South Migration of the Ocean Fronts in the Southern Ocean)
Moros, M., De Deckker, P., Perner, K., Ninnemann, S. U., Wacker, L., Telford, R., ….
Schneider, R., 2021, Hydrographic shifts south of Australia over the last deglaciation andpossible interhemispheric linkages. Quaternary Research, 102, 130-141.
DOI: 10.1017/qua.2021.12
Simon, L. E. J., & Rodrigues, R. R., 2019, The variability of the subantarctic front and the Southern Hemisphere atmospheric jet. Brazilian Journal of Oceanography, 67, e19256.
DOI: 10.1590/S1679-87592019025606712
3.HIGAKI Hokuto (D3)
古津波波源推定手法の発展と課題
(Progress and challenges of the estimation of paleotsunami source models)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––発表次第(20 Oct. 2022, 1556):
1. OFUNE Tomu (B4: Dr. TAKAYANAGI in charge)
最終退氷期における南大洋からの100~1000年スケールでのCO2放出
Jimin Yu, Delia W. Oppo, Zhangdong Jin, Matthew Lacerra, Xuan Ji , Natalie E. Umling, David C. Lund, Nick McCave, Laurie Menviel, Jun Shao and Chen Xu, 2022. Millennial and centennial CO2 release from the Southern Ocean during the last deglaciation. Nature Geoscience, 15, 293-299.
DOI: 10.1038/s41561-022-00910-9
2. KOMEIJI Kaito (M1)
有機地球化学を用いた津波堆積物の識別
(The identification of tsunami deposits using organic geochemical analysis)
P. Bellanova et al., 2020, Organic geochemical investigation of far-field tsunami deposits of the Kahana Valley, O’ahu, Hawaii. Sedimentology, 67, 1230–1248.
DOI: 10.1111/sed.12583
O. Konechnaya et al., 2022, Evaluation of organic indicators derived from extractable, hydrolysable and macromolecular organic matter in sedimentary tsunami deposits. Marine Geology, 443, 106671
DOI: 10.1016/j.margeo.2021.106671
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(14 July 2022,1555):
1. ISHII Satoshi (B4: Dr. SUZUKI in charge)
Erynn H. Johnson, Briana M. DiMarco, David J. Peterman, Aja M. Carter, and Warren D. Allmon, 2021. Did shell-crushing predators drive the evolution of ammonoid septal shape? Paleobiology, 47(4), 666–679.
DOI: 10.1017/pab.2021.13
2. TACHI Kosuke (B4: Dr. YAMADA in charge)
Melaniuk, K., Sztybor, K., Treude, T. et al., 2022. Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N. Sci Rep 12, 1169.
DOI: 10.1038/s41598-022-05175-1
3. SEKIGUCHI Takuma (M1)
動的圧縮試験における様々な形状の岩石試料の力学特性と破壊モード
(Mechanical properties and failure mode of rock samples of various shapes in dynamic compression tests)
J.C. Li, L.F. Rong, H.B. Li, S.N. Hong, An SHPB test study on stress wave energy attenuation in jointed rock masses, Rock Mechanics and Rock Engineering. 52 (2) (2019) 403–420.
DOI: 10.1016/j.ijrmms.2019.03.011
X. P. Zhou, S. Y. Gu, Dynamic mechanical properties and cracking behaviours of persistent fractured granite under impact loading with various loading rates
Author links open overlay panel, Theoretical and Applied Fracture Mechanics
Volume 118, (2022), 103281
DOI: 10.1016/j.tafmec.2022.103281
4. TOMARU Taiga (M1)
白亜紀前期Aptian環境イベントのOAE1aについて
(OAE1a of the Early Cretaceous Aptian environmental event)
Jenkyns, H. C., 2018, Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2130), 20170073.
Percival, L. M. E., et al., 2021, Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a). Global and Planetary Change, 200: 103461.
DOI: 10.1016/j.gloplacha.2021.103461
5. OISHI Akihiro (B4: Dr. MUTO in charge)
Julien Gasc, Clémence Daigre, Arefeh Moarefvand, Damien Deldicque, Julien Fauconnier, Blandine Gardonio, Claudio Madonna, Pamela Burnley and Alexandre Schubnel, 2022.Deep-focus earthquakes: From high-temperature experiments to cold slabs. Geology.
DOI: 10.1130/G50084.1
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––発表次第(7 July 2022,1554):
1. INOGUCHI Keiichi (B4: Dr. ASAMI in charge)
Jian Zhang, Ming-Qiang Liang, Ting-Yong Li, Chao-Jun Chen, Jun-Yun Li (2022) Asian-Australian monsoon evolution over the last millennium linked to ENSO in composite stalagmite δ18O records records. Quaternary Science Reviews, 281, 107420.
DOI: 10.1016/j.quascirev.2022.107420
2. ISHII Satoshi (M2)
ドロマイトのマグネシウム同位体に関する最新研究
(Recent research on the Mg isotopes of dolomite)
Hu, Z., Bialik, O., Hohl, S., Xia, Z., Waldmann, N., Liu, C. and Li, W., 2021, Response of Mg isotopes to dolomitization during fluctuations in sealevel: Constraints on the hydrological conditions of massive dolomitization systems. Sedimentary Geology, DOI: 10.1016/j.sedgeo.2021.105922
Shalev, N., T, Bontoganali., Wheat, C. and Vance, D., 2019, New isotope constraints on the Mg oceanic budget. Narure communications.
DPI: 10.1038/s41467-019-13514-6
3. ISHIGAKI Akimasa (D3)
鉄マンガンクラストの地球科学的特徴とリン酸塩化イベント
(Geoscientific characterization of the ferromanganese crust and
phosphatization events in Pacific seamounts)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(30 June 2022,1553):
1. ODA Hiroto (B4: Dr. MUTO in charge)
Vassilios K. Karastathis, George Eleftheriou, Menas Kafatos, Kanaris Tsinganos, G-Akis Tselentis, Evangelos Mouzakiotis and Dimitar Ouzounov, 2022, Observations on the stress related variations of soil radon concentration in the Gulf of Corinth, Greece. Scientific Reports., 12.
DOI: 10.1038/s41598-022-09441-0
2. NAGAHASHI Kouki (M2)
世界最⼤のカルデラ「トバカルデラ」に関する最近の研究
(Recent research on Toba Caldera, the largest caldera in the world.)
Srivastava, A.K., Singh, A., Muhammad, R.F.B.H. et al., 2021. Geochemical characterization and regional correlation of Youngest Toba Tuff (YTT, 75 ka) glass shards, Purna alluvial basin, Central India. Arab J Geosci 14, 2013.
DOI: 10.1007/s12517-021-07848-z
Yong Ge and Xing Gao., 2020. Understanding the overestimated impact of the Toba volcanic super-eruption on global environments and acient hominins. Quat. Int., 559, 24-33.
DOI: 10.1016/j.quaint.2020.06.021
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(23 June 2022,1552):
1. SATO Yuito (B4: Dr. KUROYANAGI in charge)
Surface ocean warming and acidification driven byrapid carbon release precedes Paleocene-Eocene Thermal Maximum.
Tali L. Babila, Donald E. Penman, Christopher D. Standish, Monika Doubrawa, Timothy J. Bralower, Marci M. Robinson, Jean M. Self-Trail, Robert P. Speijer, Peter Stassen, Gavin L. Foster, James C. Zachos (2022) Surface ocean warming and acidification driven byrapid carbon release precedes Paleocene-EoceneThermal Maximum. SCIENCE ADVANCES. 8, eabg1025.
2. SHIMADA Tomoya (B4: Prof. TAKASHIMA in charge)
New Precise Dating of the India-Asia Collision in the Tibetan Himalaya at 61 Ma.
An, W., Hu, X., Garzanti, E., Wang, J. G., & Liu, Q. (2021) New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma. Geophysical Research Letters, 48, e2020GL090641.
DOI: 10.1029/2020GL090641
3. IIDA Masaki (M1)
ストーム堆積物と津波堆積物は識別出来るのか?
(What are the differences between storm deposits and tsunami deposits?)
Brill et al., 2019, Modern and historical tropical cyclone and tsunami deposits at the coast of Myanmar: Implications for their identification and preservation in the geological record. Sedimentology, 67, 1431-1459.
DOI: 10.1111/sed.12586
Nakanishi et al., 2020, Holocene tsunami, storm, and relative sea level records obtained from the southern Hidaka coast, Hokkaido, Japan. Quat. Sci. Rev., 250, 106678.
DOI:10.1016/j.quascirev.2020.106678
4. HIRANO Fumika (M2)
湾およびラグーン環境における泥質堆積物輸送
(Muddy sediment transport in a bay and a lagoon)
Yuki Ota, Atsushi Suzuki, Kyoko Yamaoka, Masayuki Nagao, Yuichiro Tanaka, Toshiaki Irizuki, Osamu Fujiwara, Kaoru Yoshioka, Shungo Kawagata, Shigenori Kawano, Osamu Nishimura. (2019) Sediments of Matsushima Bay, Northeastern Japan: Insights Gained From 5 Years of Sedimentological Analysis Following the 2011 Tohoku Earthquake-Tsunami. Geochemistry, Geophysics, Geosystems. Volume20, Issue8, 3913-3927.
DOI: 10.1029/2019GC008381
E.C.Bortolin, J.Weschenfelder, E.H.Fernandes, L.P.Bitencourt, O.O.Möller, F.García-Rodríguez, E.Toldo. (2020) Reviewing sedimentological and hydrodynamic data of large shallow coastal lagoons for defining mud depocenters as environmental monitoring sites. Sedimentary Geology. 410, 105782.
DOI: 10.1016/j.sedgeo.2020.105782
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(9 June 2022,1551):
1. TSUCHIYA Mayu (B4: Dr. SUZUKI in charge)
Chana F. Kranzler, Mark A. Brzezinski, Natalie R. Cohen, Robert H. Lampe, Michael Maniscalco, Claire P. Till, James Mack, Jason R. Latham, Kenneth W. Bruland,
Benjamin S. Twining, Adrian Marchetti and Kimberlee Thamatrakoln (2021) Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nature Geoscience, 14, 231–237.
DOI: 10.1038/s41561-021-00711-6
2. KUROSU Daichi (M2)
完新世における微量元素を用いた石筍古気候学について
(Stalagmite paleoclimatology using trace elements in the Holocene)
Carolin, S, A., Walker, R, T., Day, C, C., Ersek, V., Sloan, R, A., Dee, M, W., … Henderson, G, M., 2019, Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change. Proceedings of the National Academy of Sciences of the United States of America, 116(1), 67-72.
Feng, X., Yang, Y., Cheng, H., Zhao, J., Kong, X., Zhang, P., … Edwards, R, L., 2020, The 7.2 ka climate event: Evidence from high-resolution stable isotopes and trace element records of stalagmite in Shuiming Cave, Chongqing, China. The Holocene, 30(1), 145-154.
3. HIRANO Mitsuhiro (D2)
対数周期べき乗特異点モデルの紹介
(Introduction of log-periodic power law singularity model)
4. TANIGAWA Daichi (B4: Dr. SUGAWARA in charge)
Ikehara et al. (2021) The 2011 Tohoku-oki tsunami-induced sediment remobilization on the Sendai shelf, Japan, from a comparison of pre- and post-tsunami surface sediments. Sci. Rep. 11, 7864.
DOI: 10.1038/s41598-021-87152-8
[Abstracts ]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(2 June 2022,1550):
1. KIMOTO Yuna (M1)
WPWPとルーウィン海流の変動に 対する 地球軌道要素の影響
(The effects of orbital forcing for the variability of the Western Pacific Worm Pool and the Leeuwin Current)
Hollstein, M., Mohtadi, M., Kienast, M., Rosenthal, Y., Groeneveld, J., Oppo, D. W., Southon, J. R. and Luckge, A., 2020, The Impact of Astronomical Forcing on Surface and Thermocline Variability Within the Western Pacific Warm Pool Over the Past 160 kyr. Paleoceanogr. Paleoclimatol., 35(6), PA003832.
DOI: 10.1029/2019PA003832
Auer, G., Petrick, B., Yoshimura, T., Mamo, B. L., Reuning, L., Takayanagi, H., Vleeschouwer, D. D. and Martinez, A. G., 2021, Intensified organic carbon burial on the Australian shelf after the Middle Pleistocene transition. Quat. Sci. Rev., 262,106965.
DOI: 10.1016/j.quascirev.2021.106965
2. MINAMIDATE Kenta (D2)
古台風研究の現状と課題
(Current knowledge and challenges of paleostorm research)
[Abstracts ]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(19 May 2022,1549):
1. YOSHIBE Momo (B4: Dr. KUROYANAGI in charge)
巨大絶滅における温度変化の閾値
Thresholds of temperature change for mass extinctions.
Haijun Song, David B. Kemp, Li Tian, Daoliang Chu, Huyue Song & Xu Dai (2021) Thresholds of temperature change for mass extinctions. NATURE COMMUNICATIONS. 12, 4694.
DOI: 10.1038/s41467-021-25019-2
2. MITO Yuga (B4: Dr. SUGAWARA in charge)
チリ・アタカマ砂漠沿岸での完新世中期溺水の証拠
Pedro Andrade, James Goff, Richard Pearce, Andrew Cundy, David Sear, Victoria Castro, 2022. Evidence for a mid-Holocene drowning from the Atacama Desert coast of Chile. J. Archaeol. Sci. 140, 105565.
3. MACHIDA Kazuki (D2)
地震の潮汐トリガーに関する最近の分析
(Recent analysis of tidal triggering of earthquakes.)
Peng, G. et al., 2021, Precursory tidal triggering and b value variation before the 2011 Mw 5.1 and 5.0 Tengchong, China earthquakes, Earth and Planetary Science Letters, 574, 117167.
Hirose, F. et al., 2019, Tidal forcing of interplate earthquakes along the Tonga-Kermadec Trench, Journal of Geophysical Research: Solid Earth, 124.10, 10498-10521.
DOI:10.1016/j.epsl.2021.117167
Sahoo, S. et al., 2021, Tidal triggering of micro-seismicity associated with caldera dynamics in the Juan de Fuca ridge, Journal of Volcanology and Geothermal Research, 417, 107319.
DOI:10.1016/j.jvolgeores.2021.107319
[Abstracts ]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(28 April 2022,1548):
1. HASHIMOTO Yuri (B4: Dr. ASAMI in charge)
過去 6,700年間にわたるアジモンスー降水量の長期的な減少と急激な気候変動
Yang, B, Qin, C, Brauning, A, et al. (2021) Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6,700 years. Proceedings of the National Academy of Science of the United States of America, 118(30): e2102007118
2. YOSHIIKE Kanano (B4: Prof. TAKASHIMA in charge)
三畳紀初期の秦嶺(チンリン)山脈造山帯東部における北中国地塊と南中国地塊の衝突開始
Qianli Ma , Jianghai Yang , Yuansheng Du, Xianduo Dai , Rong Chai , Hua Guo , Yajun Xu, (2021) Early Triassic initial collision between the North China and South China blocks in the eastern Qinling Orogenic Belt. Tectonophysics, 814, 228965,
DOI:10.1016/j.tecto.2021.228965
3. OTSUBO Takumi (M1)
パラナエテンデカ火成岩岩石区とWeissert Eventの関係性についての層序年代学的な検討(The chronostratigraphic association between Paraná-Etendeka Large Igneous Province and Weissert Event.)
Rocha, B. C., Davies, J. H., Janasi, V. A., Schaltegger, U., Nardy, A. J., Greber, N. D., ... & Polo, L. A. (2020) Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event. Geology, 48 (12), 1174-1178.
DOI:10.1130/G47766.1
Bacha, R. R., Waichel, B. L., & Ernst, E. (2022) The mafic volcanic climax of the Paraná‐Etendeka Large Igneous Province as the trigger of Weissert Event. Terra Terra Nova, 34 (1), 28-36.
DOI: 10.1111/ter.12558
[Abstracts ]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(21 April 2022,1547):
1. SUDA Makoto (M1)
大地震後の余効変動におけるべき乗型流動とべき乗型粘弾性モデル(Power-law flow following mega-quakes and power-law viscoelastic models.)
Tang, C.-H., Barbot, S., Hsu, Y.-J., Wu, Y.-M., 2020, Heterogeneous power-law flow with transient creep in Southern California following the 2010 El Mayor- Cucapah earthquake. J. Geophys. Res. Solid Earth, 125, e2020JB019740.
Sabatier, J., 2020, Beyond the particular case of circuits with geometrically distributed components for approximation of fractional order models: Application to a new class of model for power law type long memory behavior modelling. J. Adv. Res., 25, 243–255.
2. MASUDA Hidetoshi (M1)
日本海溝沿いの海底における地震・津波イベント堆積物(Earthquake- and tsunami-induced submarine event deposits along the Japan Trench.)
Ikehara, K., Usami, K., Irino, T., Omura, A., Jenkins, R.G. and Ashi, J. (2021) Characteristics and distribution of the event deposits induced by the 2011 Tohoku-oki earthquake and tsunami offshore of Sanriku and Sendai, Japan. Sediment. Geol., 411:105791.
DOI: 10.1016/j.sedgeo.2020.105791.
Usami, K., Ikehara, K., Kanamatsu, T. and McHugh, C.M. (2018) Supercycle in great earthquake recurrence along the Japan Trench over the last 4000 years. Geosci. Lett., 5:11.
DOI: 10.1186/s40562-018-0110-2.
[Abstracts ]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(20 Jan. 2022, 1546):
1. Yuri HASHIMOTO (B3: Dr. Takayanagi in charge)
完新世における太平洋暖水塊の表層貯熱量によるウォーカー循環及びENSOの変調
Dang et al. (2020) Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene. Science Advances 6, eabc0402.
2. Daichi TANIGAWA (B3: Dr. Asami in charge)
過去1000 年で最も弱い大西洋熱塩循環
Caesar et al. (2021) Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geosciences, 14 118–121.
doi: 10.1038/s41561-021-00699-z
3. Miho FURUKAWA (M1)
Title: 断層弱化の原因となり得る⾮晶質物質の⽣成
Generation of amorphous material as a possible cause of fault weakening
4. Haruna SUGAZAWA (M2)
Title: 最終氷期~現在の北太平洋亜熱帯モード水の変遷とその変動要因
Variation of North Pacific Subtropical Mode Water and its triggers from last glacial to present
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(6 Jan. 2022, 1545):
1. Kanano YOSHIIKE (B3: Prof. Iryu in charge)
沖縄トラフ中央におけるUK'37とTEX86 の2つの古⽔温計に基づく最終退氷期からの⿊潮海流の変化に関する新しい知⾒
Li et al. (2020) New Insights Into Kuroshio Current Evolution Since the Last Deglaciation Based on Paired Organic Paleothermometers From the Middle Okinawa Trough. Paleoceanography and Paleoclimatology 35, e2020PA004140.
doi: 10.1029/2020PA004140
2. Kosuke TACHI (B3: Prof. Takashima in charge)
⼤規模⽕成岩地域の噴⽕・⾵化と深部時間炭素循環の相互関係
Johansson et al. (2018) The Interplay Between the Eruption and Weathering of Large Igneous Provinces and the Deep-Time Carbon Cycle. Geophysical Research
Letters, 45 5380–5389. doi: 10.1029/2017GL076691
3. Ryota WAKO (M1)
Title: Nd 同位体⽐を⽤いた古海洋復元の研究紹介(南⼤洋編)
Introduction of research using neodymium (Nd) isotopic composition in the
Southern Ocean
4. Akimasa ISHIGAKI (D2)
Title: 海底鉱物資源の成因と太平洋海山のリン酸塩化イベント
Origin of marine mineral resources and phosphatization events in Pacific seamounts
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(23 Dec. 2021, 1544):
1. Momo YOSHIBE (B3: Dr. Takashima in charge)
Western Interior Basin(USA)でのセノマニアン-チューロニアンに起きた海洋無酸素事変
2(OAE2)の地域的層位合成:新しいRe-Os化学層序と40Ar/39Ar地質年代
Jones et al. (2021) Regional chronostratigraphic synthesis of the Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE2) interval, Western Interior Basin (USA): New Re-Os chemostratigraphy and 40Ar/39Ar geochronology. GSA Bulletin 133, 1090–1104.
doi: 10.1130/B35594.1
2. Akimitsu HOSHINO
Title: OAE における風化と海洋の栄養化
Weathering and ocean nutrient enrichment in Oceanic Anoxic events
3. Kiriha TANAKA (D3)
Title: 磁気共鳴法を用いた研究紹介
Introduction of Research Using Magnetic Resonance Method
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(16 Dec. 2021, 1543):
0.特別セミナー(13:00〜14:00,zoom)
大和田正明先生(山口大学)
Prof. Masaaki OWADA (Yamaguchi Univ.)
Title: 西南日本,白亜紀の地殻・マントル相互作用
Cretaceous tectonic and mantle dynamics in southwestern Japan
1. Yoko MINEGISHI (B3: Dr. Muto in charge)
ナノ物質の流動と地震の不安定性
Sun, H. and Pec, M. (2021) Nanometric flow and earthquake instability. Nature Communications 12, 6779.
doi: 10.1038/s41467-021-26996-0
2. Yuga MITO (B3: Dr. Suzuki in charge)
紅藻由来の色素体の起源に影響を与える真核生物の進化の分子タイムスケール
Strassert et al. (2021) A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nature Communications 12, 1879.
doi: 10.1038/s41467-021-22044-z
3. Takuya NISHIO (D2)
Title: 有孔虫殻のMg/Ca 比における温度以外の要因
Nonthermal factors on Mg/Ca of foraminiferal tests
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(9 Dec. 2021, 1542):
1. Hiroto TOJO (B3: Dr. Sasaki in charge)
カンブリア紀の節足動物の外突起と付属肢の相同性
Liu et al. (2021) Exites in Cambrian arthropods and homology of arthropod limb branches. Nature Communications 12, 4619.
doi: 10.1038/s41467-021-24918-8
2. Mikihiro KAWABATA (M1)
Title: ゆっくりすべりと各種地震の相互作用
Interactions between slow earthquakes and various kinds of ones
3. Kazuma OIKAWA (D1)
Title: Clumped-isotope thermometer の原理と課題解決にむけた取り組み
Principles and problems of the clumped isotope thermometer
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(2 Dec. 2021, 1541):
1. Mayu TSUCHIYA (B3: Prof. Iryu in charge)
Liu et al. (2021) Species specific Sr/Ca-δ18O relationships for three Tridacnidae species from the northern South China Sea. Chemical Geology 584, 120519.
doi: 10.1016/j.chemgeo.2021.120519
2. Fumika HIRANO (M1)
Title: ⽔槽実験から推定される津波の⽔理学的特徴および津波堆積物の堆積過程
Tsunami hydrodynamic characteristics and deposition process of tsunami
deposit inferred from the laboratory experiment
3. Andros Daniel Cruz Salmeron (D3)
Title: Sediment provenance in the Okinawa Trough as a proxy of KC fluctuations since the late Pleistocene
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(25 Nov. 2021, 1540):
0.地圏合同セミナー(DGES seminar: 13:00〜14:00)
1. Shunsuke TANAKA (B3: Dr. Sugawara in charge)
Title: ハワイ諸島における先史時代の遠地津波に関する堆積物の証拠
La Selle et al. (2020) Sedimentary evidence of prehistoric distant-source tsunamis in the Hawaiian Islands. Sedimentology 67, 1249–1273.
doi: 10.1111/sed.12623
2. Shuto KANO (M2)
Title: 沈み込み帯における蛇紋岩と流体の影響
The influence of serpentine and fluids in subduction zones
4. Hokuto HIGAKI (D2)
Title: GPR 地中レーダー の 古津波堆積物 調査 への 応用可能性について
Applicability of GPR to the research of paleotsunami deposit
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(18 Nov. 2021, 1539):
1. Yuito SATO (B3: Dr. Takayanagi in charge)
Title: 中期更新世気候遷移(MPT)以降の氷期終焉期にみられる地軸傾斜⾓の持続的な影響
Bajo et al. (2020) Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science 367, 1235–1239.
2. Tomoya SHIMADA (B3: Dr. Suzuki in charge)
Title: ユーラシアにおける中新世後期のメガレイクの海退
Palcu et al. (2021) Late Miocene megalake regressions in Eurasia. Scientific reports 11, 11471. doi: 10.1038/s41598-021-91001-z
3. Nana WATANABE (M2)
Title: 台湾の古地理に関する研究
Researchs on the Paleogeography of Taiwan
4. Velasco-Reyes Erick R. (D1)
Title: An analysis of grain density variability's role in the tsunami's sedimentary process
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(11 Nov. 2021, 1538):
1. Hiroto ODA (B3: Prof. Takashima in charge)
Title: Cauコアから得られたアプチアンの⾼解像度の炭素同位体⽐層序記録と海洋無酸素事変を含む古環境の復元
Castro et al. (2021) High-Resolution C-Isotope, TOC and Biostratigraphic Records of OAE 1a (Aptian) From an Expanded Hemipelagic Cored Succession, Western Tethys: A New Stratigraphic Reference for Global Correlation and Paleoenvironmental Reconstruction. Paleoceanography and Paleoclimatology 36, e2020PA004004..
doi: 10.1029/2020PA004004
2. Wataru NAKAMURA (M2)
Title: 津波土砂移動モデリングにおける不確実性~地形の影響~
Uncertainties on tsunami sediment transport modeling ~Effect of topography~
3. Tomohisa KAMIYA (M2)
Title: 津波堆積物の対比法に関する研究とXRFコアスキャナーの利用
Research on lateral correlation of tsunami deposits and the use of XRF core scanner
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(28 Oct 2021, 1537):
*地圏合同セミナー*
【講演者】
高橋美紀(産業技術総合研究所)
Miki TAKAHASHI (AIST)
【タイトル】
高温熱水条件での花崗岩を用いた破壊実験に見られるゆっくりとした応力降下と長石ガウ
ジ剪断同時ヒーリングの関係について
Slow stress-drop possibly caused by comminution-coincident-healing in feldspar gouge zone in granite rock under hydrothermal conditions
1. Akihiro OISHI (B3: Dr. Kuroyanagi in charge)
Title: 海洋の酸性化と温暖化によるサンゴ礁の炭酸カルシウム生産量の世界的な減少
Cornwall et al. (2021) Global declines in coral reef calcium carbonate production
under ocean acidification and warming. PNAS 118, e2015265118.
2. Tomu OFUNE (B3: Dr. Asami in charge)
Title: 低緯度地域から強い影響を受ける過去3600年の沖縄トラフ中部の海洋表面温度
Xu et al. (2021) Low latitude control on sea surface temperatures in the middle Okinawa Trough over the last 3.6 kyr. Geo-Marine Letters 41, 39.
doi: 10.1007/s00367-021-00712-9
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(21 Oct 2021, 1536):
1. Tsubasa ARAKI (B3: Dr. Kuroyanagi in charge)
Title: カリフォルニア海流生態系における20 世紀の海洋酸性化の10 年単位の変動
Osborne et al. (2020) Decadal variability in twentieth-century ocean
acidification in the California Current Ecosystem. Nature Geoscience 13, 43-49.
doi: 10.1038/s41561-019-0499-z
2. Keiichi INOGUCHI (B3: Dr. Sugawara in charge)
Title: DNN による逆解析モデルを⽤いたプラトン島における2004 年インド洋⼤津波の流況の再構築
Mitra et al. (2021) Reconstruction of flow conditions from 2004 Indian Ocean tsunami deposits at the Phra Thong island using a deep neural network inverse model. Nat. Hazards Earth Syst. Sci. 21, 1667–1683.
doi: 10.5194/nhess-21-1667-2021
3. Ryoto HASUNUMA (M1)
Title: 放散⾍と環境因⼦のRDA(冗⻑性分析)解析
Redundancy analysis (RDA) for relationships between radiolarians and
environmental factors
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(15 July 2021, 1535):
1. Taiga TOMARU (B4: Dr. Asami in charge)
Abram et al. (2020) TCoupling of Indo-Pacific climate variability over the last millennium. Nature 579, 385-392.
doi: 10.1038/s41586-020-2084-4
2. Masaki IIDA (B4: Prof. Takashima in charge)
Title: OAE2期間におけるLIPの形成と世界的な気温の変化の間にある複雑な相互関係
Percival et al. (2020) Complex Interactions Between Large Igneous Province Emplacement and Global-Temperature Changes During the Cenomanian-Turonian Oceanic Anoxic Event (OAE 2). Paleoceanography and Paleoclimatology 35, e2020PA004016.
doi: 10.1029/2020PA004016
3. Akira IKEDA (M2)
Title: 古地磁気学的手法を用いた火山性土石流の定置温度推定に関する研究
The estimation of emplacement temperature of volcanic debris flow by Paleomagnetism
4. Mitsuhiro HIRANO (D1)
Title: Weibull分布を用いた地震の発生に関する確率推定と情報幾何の応用
Probability estimation of earthquake occurrence using the Weibull distribution and its applications by information geometry
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(8 July 2021, 1534):
1. Shotaro NAGATOMO (B4: Dr. Muto in charge)
Braunagel, M. J., and Griffith, W. A. (2019) The effect of dynamic stress cycling on the compressive strength of rocks. Geophysical Research Letters 46, 6479-6486. doi: 10.1029/2019GL082723
2. Koki KAWANAMI (M2)
Title: 電離層全電子数(TEC)と太陽周期によって変化する太陽パラメータとの相関関係
Correlation between Total Electron Content (TEC) and solar parameters that change with the solar cycle
3. Ryohei ENDO (M2)
Title: 造礁サンゴ骨格の形成メカニズムと骨格密度に関する研究
Research on the formation mechanism and skeletal density of Porites coral
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(1 July 2021, 1533):
1. Makoto SUDA (B4: Prof. Iryu in charge)
20世紀中盤以降の⼈類の膨大なエネルギー消費による地質学的影⼈新世の提案
Syvitski et al. (2020) Extraordinary Human Energy Consumption and Resultant Geological Impacts Beginning around 1950 CE Initiated the Proposed Anthropocene Epoch. Commun Earth Environ 1, 32.doi: 10.1038/s43247-020-00029-y
2. Satoshi ISHII (M1)
Title: 新生代のドロマイト化作用モデルに関する最新研究
Recent research on the dolomitization model in Cenozoic period
3. Hiroaki YOKOYAMA (M2)
Title: 方解石の粒径古応力計と動的再結晶のカイネティクス
Grain size piezometer for calcite and dynamic recrystallization kinetics
4. Sayaka OKUHIRA (D3)
Title: ⻑期に連続した時系列データの傾向分析
Analysis methods for long-term continuous time series data
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(24 June 2021, 1532):
1. Takumi OTSUBO (B4: Dr. Takayanagi in charge)
ENSO-SAMによって推進された過去2000年間にわたる南極海氷域の数十年規模の動向
Crosta et al. (2021) Multi-decadal trends in Antarctic sea-ice extent
driven by ENSO–SAM over the last 2,000 years. Nature Geoscience 14, 156–160.
doi: 10.1038/s41561-021-00697-1
2. Koki NAGAHASHI (M1)
Title: 海洋コアに含まれるテフラの識別・対⽐に関する最近の研究
Recent research on discrimination and correlation of tephras in marine sediment cores
3. Momoko WATANABE (M2)
Title: 中新世〜 新世における東アジアモンスーン強度の変動復元
Reconstruction of the variability of East Asian monsoon intensity during the Miocene to Pliocene
4. Sando SAWA (D3)
Title: Global water migration on Mars and Earth
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(10 June 2021, 1531):
1. Shion TANAKA (B4: Dr. Suzuki in charge)
共通種が地球生態系と気候変動をつなげる:浮遊性有孔虫化石記録中の動的エビデンス
Hannisdal et al. (2017) Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record. Proc. R. Soc. B 284, 20170722.
2. Miki ARAKANE (B4: Dr. Sugawara in charge)
Bosnic et al. (2021) Onshore flow characteristics of the 1755 CE Lisbon tsunami: Linking forward and inverse numerical modeling. Marine Geology 434, 106432.
doi: 10.1016/j.margeo.2021.106432
3. Natsumi SEKI (M2)
Title: 後期完新世のモンスーン地域における⽯筍を⽤いた古環境復元
Late Holocene paleoclimatology with Chinese stalagmites
4. Kazuki MACHIDA (D1)
Title: 地震の潮汐トリガーに関する最近の研究
Recent research on tidal triggering of earthquakes
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(27 May 2021, 1530):
0. Answers to the questions given at the last IGPS seminar
– Yukiko KITA: Hodel et al. (2021)
1. Takuma SEKIGUCHI (B4: Dr. Asami in charge)
Schmitt et al. (2020) Caribbean cyclone activity: an annually‑resolved Common Era record. Scientific Report 10, 11780.
doi: 10.1038/s41598-020-68633-8
2. Hiroki KOGANEMARU (B4: Dr. Muto in charge)
摩擦特性から考察する2011 年東北地⽅太平洋沖地震の際のプレート間チャネル層によるすべりの制御の有無
Nakata et al. (2021) Presence of interplate channel layer controls of slip during and after the 2011 Tohoku‑Oki earthquake through the frictional characteristics. Scientific Report 11, 6480.
doi: 10.1038/s41598-021-86020-9
3. Hiromu TAKASAWA (M2)
Title: ノルウェー, スヴァールバル諸島に記録されたバレミアン/アプチアン境界の年代値
The absolute age of the Barremian-Aptian boundary recorded in Svalbard, Norway
4. Sambuddha DHAR (D3)
Title: The evolution of stress field following the 2011 Tohoku-oki earthquake
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(13 May 2021, 1529):
1. Yukiko KITA (B4: Prof. Iryu in charge)
31Ma 前のドレーク海峡の誕⽣と南極環流の発⽣について:有孔⾍の記録とネオジム同位体記録の再考
Hodel et al. (2021) Drake Passage gateway opening and Antarctic Circumpolar Current onset 31 Ma ago: The message of foraminifera and reconsideration of the Neodymium isotope record. Chemical Geology, 570, 120171.
doi: 10.1016/j.chemgeo.2021.120171
2. Yuna KIMOTO (B4: Dr. Suzuki in charge)
Lin et al. (2017) Ocean response to typhoons in the western North Pacific: Composite results from Argo data. Deep-Sea ResearchⅠ, 123, 62–74.
doi: 10.1016/j.dsr.2017.03.007
3. Daichi KUROSU (M1)
Title: 東アジアの完新世における石筍古気候学について
Stalagmite paleoclimatology in the Holocene of East Asia
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(6 May 2021, 1528):
1. Akane HOSODA (B4: Dr. Kuroyanagi in charge)
浮遊性有孔⾍のブルームに関する⽇分解能での気温と構造の関係
Chernihovsky et al. (2020) The daily resolved temperature dependence and structure of planktonic foraminifera blooms, Scientific Reports 10, 17456.
doi: 10.1038/s41598-020-74342-z
2. Haruya NAGAFUCHI (B4: Dr. Sugawara in charge)
台湾北部のイーラン平野における極端事象による堆積物の識別
Bruce H. Shyu et al. (2019) Identification of extreme event deposits on the coastal Ilan Plain, northeastern Taiwan, Quaternary International 503, 70–78.
doi: 10.1016/j.quaint.2018.08.012
3. Kenta MINAMIDATE (D1)
Title: 沿岸巨礫堆積物研究の進展
Current progress of the research on coastal boulder deposits
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(29 Apr. 2021, 1527):
1. Issei MURAKAMI (B4: Dr. Asami in charge)
Yan et al. (2020) Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells, PNAS 117, 7038–7043.
2. Kaito WATANABE (B4: Dr. Kuroyanagi in charge)
新⽣代初期の海洋貧酸素拡⼤における窒素同位体の証拠
Soleymani et al. (2019) Nitrogen isotope evidence for expanded ocean suboxia
in the early Cenozoic, Science 364, 386–389.
3. Takumi KITAMI (M2)
Title: Risks of catastrophic eruptions, Kikai caldera
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(22 Apr. 2021, 1526):
1. Hidetoshi MASUDA (B4: Dr. Takayanagi in charge)
最終氷期における太平洋深層⽔の拡⼤に伴う⼤気CO2の減少
Yu et al. (2020) Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion, Nature Geoscience 13, 628–633.
doi: 10.1038/s41561-020-0610-5
2. Shu YAMAMOTO (B4: Dr. Sasaki in charge)
カンブリア紀三葉虫類Naraoia spinosa の付属肢における微細構造についての個体成長的、及び生態学的考察
Zhai et al. (2019) Fine-scale appendage structure of the Cambrian trilobitomorph Naraoia spinosa and its ontogenetic and ecological implications, Proc. R. Soc. B 286, 20192371.
doi: 10.6084/m9.figshare.c.4723397.
3. Yuto FUJIWARA (M2)
Title: ペルム紀中期の地質年代設定と環境変化
Mid-Permian geological setting and environmental changes
4. Rony Mohammad Aftabuzzaman (D3)
Title: Paleogene larger benthic foraminiferal biostratigraphy and biofacies of Kutch, north-western India
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(21 Jan. 2021, 1525):
1. Shu YAMAMOTO (B3: Dr. Muto in charge)
粒径古応力計を用いた冷却による変形への影響
Soleymani et al. (2020) The effect of cooling during deformation on recrystallized
grain-size piezometry, Geology 48, 531–535.
doi: 10.1130/G46972.1
2. Taiga TOMARU (B3: Prof. Iryu in charge)
第四紀後期の⼈類と⼤型哺乳類の変遷における地磁気強度の役割について
Channell and Vigliotti (2019) The Role of Geomagnetic Field Intensity in Late
Quaternary Evolution of Humans and Large Mammals, Reviews of Geophysics 57, 709–738.
doi: 10.1029/2018RG000629
3. Wataru NAKAMURA (M1)
Title: 津波土砂移動モデリングの課題
Issues on tsunami sediment transport modeling
4. Akimasa ISHIGAKI (D1)
Title: 海⼭のリン灰岩から紐解くリン酸塩化イベントの影響
Seamount phosphorites to unravel the impact of phosphatization events
5.Sayaka OKUHIRA (D2)
Title: 季節性を有する時系列データの傾向検出に⽤いられる分析⼿法
Analytical methods used to detect trends in time series data with seasonality
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(7 Jan. 2021, 1524):
1. Hidetoshi MASUDA (B3: Prof. Iryu in charge)
浮遊性有孔⾍フォーナに基づく鮮新世以降500 万年における⿊潮の進化の復元
Wang et al. (2020) The evolution of the Kuroshio Current over the last 5 million years since the Pliocene: Evidence from planktonic foraminiferal faunas, China Earth Sciences 63, 1–23.
doi: 10.1007/s11430-019-9641-9
2. Issei MURAKAMI (B3: Dr. Suzuki in charge)
Barceló-Llull et al. (2017) Anatomy of a subtropical intrathermocline eddy, Deep-Sea Research Part I 124, 126–139.
doi: 10.1016/j.dsr.2017.03.012
3. Hiromu TAKASAWA (M1)
Title: テチス海西部に記録された前期白亜紀Aptian の古環境
Paleoenvironment in the Aptian (Early Cretaceous) of Western Tethys
4. Takuya NISHIO (D1)
Title: 炭酸塩生物を用いた過去の海洋炭酸系変遷の理解 ~海洋のpH 指標について~
Understanding the past marine carbonate systems using marine calcifiers
– About the proxy for pH of seawater –
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(24 Dec. 2020, 1523):
1. Haruya NAGAFUCHI (B3: Dr. Suzuki in charge)
オルドビス紀⽣物⼤放散事変時のdiploporan blastozoans(棘⽪動物)の分散と進化の変遷の推定
Lam et al. (2020) Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event, Paleobiology, 1–23.
doi: 10.1017/pab.2020.24
2. Akane HOSODA (B3: Dr. Sasaki in charge)
Helicoforaminaの発⽣⽣物学が明らかにする、初期エディアカラ⽣物群のWeng’an ⽣物相(南中国,Doushantuo 層)でのholozoan 類似種、隠れた多様性、そして多様な要素からなる環境への適応
Yin et al. (2020) Developmental biology of Helicoforamina reveals holozoan affinity, cryptic diversity, and adaptation to heterogeneous environments in the early Ediacaran Weng’an biota (Doushantuo Formation, South China), Science Advances 6, eabb0083.
3. Taro HINO (M2)
Title: 後期ペルム紀の古テチス海深層水における酸素欠乏の変化
Oceanic anoxia changes in the deep waters of the Paleo-Tethys Sea during the Late Permian
4. Thomas (M2)
Title: Cooling event in Late Holocene and its hydrological driving mechanism in
western Pacific: Evidence from Yellow Sea, China and Houbihu, Taiwan
5. Sayaka OKUHIRA (D2)
Title: サンゴ⾻格の化学分析を⽤いた過去の気候変動の復元
Paleoclimate reconstruction based on the coral skeleton
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(17 Dec. 2020, 1522):
1. Kaito WATANABE (B3: Dr. Takayanagi in charge)
三畳紀末期の中央⼤⻄洋マグマ分布域における地下深部由来のCO2
Capriolo et al. (2020) Deep CO2 in the end-Triassic Central Atlantic
Magmatic Province, Nature Communications 11, 1670.
doi: 10.1038/s41467-020-15325-6
2. Shotaro NAGATOMO (B3: Dr. Muto in charge)
数値モデルリングアプローチによる一時的なC′面の発達
Finch et al. (2020) The ephemeral development of C′ shear bands: A numerical
modelling approach, Journal of Structural Geology 139, 104091.
doi: 10.1016/j.jsg.2020.104091
3. Kazuki MACHIDA (M2)
Title: 潮汐による地震のトリガーに関する分析と考察―室内実験と⽕⼭性地震について―
Analyses and considerations about tidal triggering of earthquakes: examples of laboratory experiment and volcanic-tectonic earthquake swarms
4. Tan FURUKAWA (M2)
Title: 沈み込み開始に伴うMetamorphic sole の形成プロセス
Metamorphic sole formation during subduction infancy
5. Andros Cruz Daniel Salmeron (D2)
Title: South China Sea as a deep water circulation proxy of the North Pacific
Ocean since the LGM
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(3 Dec. 2020, 1521):
1. Shion TANAKA (B3: Prof. Takashima in charge)
⻄南⽇本弧の中新世花崗岩類のU-Pb 年代:ホットサブダクションに関連した⽕成活動へ
の⽰唆
Shinjoe et al. (2019) U–Pb ages of Miocene near-trench granitic rocks of the Southwest Japan arc: implications for magmatism related to hot subduction, Geological Magazine, 1–25.
doi: 10.1017/S0016756819000785
2. Takuma SEKIGUCHI (B3: Dr. Sasaki in charge)
ヨーロッパ産⽩亜紀後期の新⿃類が現⽣⿃類の起源を明らかにする
Field et al. (2020) Late Cretaceous neornithine from Europe illuminates the origins of crown birds, Nature 579, 397–401.
doi: 10.1038/s41586-020-2096-0
3. Natsumi SEKI (M1)
Title: Holocene paleoclimatology with Chinese stalagmites
完新世のモンスーン地域における⽯筍を⽤いた古環境復元-中国での例-
4. Ryohei ENDO (M1)
Title: サンゴのδ18O とSr/Ca の群体内および群体間の変動
Variability of Coral δ18O and Sr/Ca within and between colonies
5. Kiriha TANAKA (D2)
Title: 高速な断層摩擦による石英中の電荷捕獲欠陥の挙動
Behavior of the charge trapping centers in quartz by high-velocity friction of fault
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(19 Nov 2020, 1520):
1. Hiroki KOGANEMARU (B3: Prof. Takashima in charge)
メキシコ湾北部においてチクシュルーブの隕石衝突以前に長期的な生物多様性の損失を
引き起こした後期白亜紀の海洋脊椎動物の2段階の絶滅イベントについて
Ikejiri et al. (2020) Two-step extinction of Late Cretaceous marine vertebrates in
northern Gulf of Mexico prolonged biodiversity loss prior to the Chicxulub impact, Scientific Reports 10, 4169.
doi: 10.1038/s41598-020-61089-w
2. Makoto SUDA (B3: Dr. Asami in charge)
過去三千年間の東アジア夏季モンスーンの変動とその要因
Yamada et al. (2019) The variations in the East Asian summer monsoon over the past 3 kyrs and the controlling factors, Scientific Reports 9, 5036.
doi: 10.1038/s41598-019-41359-y
3. Koki KAWANAMI (M1)
Title: 大気電場における季節変動と永年変化の要因
Factors of seasonal and secular variation in atmospheric electric fields
4. Hiroaki YOKOYAMA (M2)
Title: 延性剪断変形におけるクリープキャビティの影響
Effects of Creep Cavity on Plastic Shear Deformation
5. Hiroshi FUJIOKA (D3)
Title: 腕足動物殻を用いた人工続成実験の現状と課題
Experimental study on artificial diagenesis of brachiopod shells –– Current status and challenges
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(12 Nov 2020, 1519):
1. Yukiko KITA (B3: Dr. Takayanagi in charge)
大規模な東アジアの乾燥化の引き金となった真の極移動について
Yi et al. (2019) A true polar wander trigger for the Great Jurassic East Asian Aridification, Geology 47,1112–1116.
doi: 10.1130/G46641.1
2. Yuna KIMOTO (B3: Dr. Kuroyanagi in charge)
無性⽣殖した浮遊性有孔⾍における⼤規模な形態の変動性
Davis et al. (2020) Extensive morphological variability in asexually produced planktic foraminifera, Science Advances 6, eabb8930.
3. Momoko WATANABE (M1)
Title: 南シナ海における東アジアモンスーンの変遷と古環境復元
Evolution of East Asian monsoon and paleoenvironmental reconstruction in the South China Sea
4. Daichi KAMEYAMA (M2)
Title: OAE2 時における⾼解像度での元素分析を⽤いた最新研究
Recent studies using high resolution elemental analysis at OAE2
5. Naoto KANEKO (D3)
Title: 地震に伴う流体移動と界面動電モデル
Fluid migration and interfacial electrokinetic models with earthquakes
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(5 Nov 2020, 1518):
1. Masaki IIDA (B3: Dr. Takayanagi in charge)
火星起源のノアキス期炭酸塩に保存された有機窒素化合物
Koike et al. (2020) In-situ preservation of nitrogen-bearing organics
in Noachian Martian carbonates, Nature Communications 11, 1988.
doi: 10.1038/s41467-020-15931-4
2. Takumi OTSUBO (B3: Dr. Asami in charge)
メガラヤンの東京湾における高時間分解能アルケノン古温度の変動:日本の寒
冷な気候と社会不安への影響
Kajita et al. (2020) High time-resolution alkenone paleotemperature variations in Tokyo Bay during the Meghalayan: Implications for cold climates and social
unrest in Japan, Quaternary Science Reviews 230, 106160.
doi: 10.1016/j.quascirev.2019.106160
3. Nana WATANABE (M1)
Title: 分子系統に基づく生物地理学的研究 ―琉球列島での例―
Biogeographical studies about the Ryukyu Islands based on molecular phylogenetic analysis
4. Sara EMANUEL (D3)
Title: Calcareous nannofossil biostratigraphy and gephyrocapsid occurrence during middle-Pleistocene
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(22 Oct. 2020, 1517):
1. Miki ARAKANE (B3: Dr. Kuroyanagi in charge)
熱帯の外洋における生物多様性の低下について
Yasuhara et al. (2020) Past and future decline of tropical pelagic biodiversity, PNAS 117, 12891–12896.
2. Yuto FUJIWARA (M1)
Title: Mid-Permian geological setting and environmental changes
(ペルム紀中期の地質年代設定と環境変化)
3. Rony Aftabuzzaman Mohammad (D3)
Title: Larger benthic foraminiferal evolution and structure and magnitude of the carbon isotope excursion of Paleogene in the eastern Neo–Tethys.
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(23 July 2020, 1516):
1. Mikihiro KAWABATA (B4: Dr. Takashima in charge)
Title: 東北日本の沈み込み帯における火山活動および火成活動に伴うカルデラを中心とした地熱ポテンシャルの推定
2. Miho FURUKAWA (B4: Prof. Iryu in charge)
Title: 中期中新世の孤⽴炭酸塩プラットフォームの貯留岩特性:ベトナム沖のCA VOI XANH産地
3. Sambuddha Dhar (D2)
Title: Post-seismic deformation study of NE Japan following 2011 Tohoku earthquake
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(9 July 2020, 1515):
1. Daichi KUROSU (B4: Prof. Nishi in charge)
環境変化への後期アプチアンの浮遊性有孔虫の群衆の形態計測的反応
: Poggio le Guaine(イタリア中央)でのParaticinella rohri の事例研究Ferraro et al. (2020) Morphometric response of late Aptian planktonic foraminiferal communities to environmental changes: A case study of Paraticinella rohri at Poggio le Guaine (central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 538, 109384.
doi: 10.1016/j.palaeo.2019.109384
2. Shuto KANO (M1)
Title: 蛇紋岩を⽤いた⾼温⾼圧条件下の摩擦実験
High-temperature and high-pressure deformation experiment using serpentine
3. Haruna SUGAZAWA (M1)
Title: Mg/Ca ⽔温計と14C 年代復元における課題点
Problems on a Mg/Ca thermometer and 14C dating
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(2 July 2020, 1514):
1. Koki NAGAHASHI (B4: Prof. Iryu in charge)
ザンクリアン洪⽔ 〜独⾃の証拠を探る〜
Garcia-Castellanos et al. (2020) The Zanclean megaflood of the Mediterranean – Searching for independent evidence. Earth-Science Reviews 201, 103061.
doi: 10.1016/j.earscirev.2019.103061
2. Erick Ricardo VELASCO REYES (M2)
Title: History and features of trans-oceanic tsunamis and implications for paleo-tsunami studies
3. Akira IKEDA (M1)
Title: 古地磁気学的手法を用いた火砕流堆積物の定置温度推定
The estimation of emplacement temperature of pyroclastic flow deposits by
Paleomagnetism
4. Dr. Daisuke SUGAWARA (Associate professor)
Title: Estimating a Tsunami Source by Sediment Transport Modeling: A Primary Attempt on a Historical/1867 Normal-Faulting Tsunami in Northern Taiwan
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(25 June 2020, 1513):
1. Satoshi ISHII (B4: Dr. Sasaki in charge)
暖水域の浮遊性有孔虫属Globigerinoidesにおける遺伝学的及び形態学的分岐
Morard et al. (2019) Genetic and morphological divergence in the
warm-water planktonic foraminifera genus Globigerinoides. Plos One 14, e0225246.
doi: 10.1371/journal.pone.0225246
2. Kazuma OIKAWA (M2)
Title: Toward a creating high-resolution paleothermometer
3. Rei SHIRAISHI (RPD)
Title: Deformation in the Earth’s interior
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(18 June 2020, 1512):
1. Akimitsu HOSHINO (B4: Dr. Yamada in charge)
プナ台地南東縁部のトラバーチンとトゥファの共存
Agustin Mors et al. (2019) Coexisting active travertines and tufas in the southeastern border of the Puna plateau. Sedimentary Geology 389, 200–217.
doi: 10.1016/j.sedgeo.2019.06.0090037-0738
2. Kenta MINAMIDATE (M2)
Title: ハワイ諸島に残された遠地津波の痕跡
The evidence of trans-oceanic tsunamis in the Hawaiian Islands
3. Hokuto HIGAKI (D1)
Title: 津波堆積物を使⽤した古津波の波源推定
Source models of paleotsunami estimated from tsunami deposits
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(11 June 2020, 1511):
1. Ryoto HASUNUMA (B4: Prof. Iryu in charge)
ジュラ紀最上部における脊椎動物の歯やカキの殻の酸素同位体組成:古環境変動や動物生息場の記録
Wierzbowski et al. (2019) Oxygen isotope profiles of uppermost Jurassic vertebrate teeth and oyster shells: a record of paleoenvironmental changes and animal habitats. Palaios 34, 585–599.
2. Mitsuhiro HIRANO (M2)
Title: 南チベットにおける2015年ネパール地震以前に観測された重力変化とその原因
Gravity changes observed before the 2015 Nepal earthquake in southern Tibet and it causes
3. Andros Daniel Cruz Salmeron (D1)
Title: Tracking water masses. Northwest Pacific case
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(4 June 2020, 1510):
1. Rikuto SHIIKI (B4: Dr. Takayanagi in charge)
温暖化下での藻類からサンゴ類への群集変化は海流輸送と海藻食害によって駆動される
Kumagai et al. (2018) Ocean currents and herbivory drive macroalgae-to- coral community shift under climate warming. PNAS 115, 8990–8995.
2. Takumi KITAMI (M1)
Title: Yellowstone 火山地帯のカルデラ発達史の最新研究
New studies of caldera development history in Yellowstone volcanic area
3. Prof. Yasufumi IRYU
Title: Cenozoic geohistory of the Ryukyu Islands: a new hypothesis
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(28 May 2020, 1509):
1. Kenji AMAZAKI (B4: Dr. Asami in charge)
サンゴ炭素同位体と成⻑速度との関係および古海⾯⽔準に関する棲息深度との関係
Linsley et al. (2019) Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications. Nature Communications 10, 2056.
doi: 10.1038/s41467-019-10054-x
2. Arisa TAKASHIMA (M2)
Title: 浮遊性有孔⾍の殻⻑・同位体⽐の関係と種特有の影響
Size-isotope relationship of planktonic foraminifera and species-specific effects
3. Maximillian Hallenberger (D3: JSPS researcher)
Title: From inorganic aragonite to skeletal calcite: Climate as a major control on carbonate mineralogy during the late Quaternary, NW-Shelf of Australia (NWS)
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(21 May 2020, 1508):
1. Ryota WAKO (B4: Dr. Kuroyanagi in charge)
人為起源の気候変動が浮遊性有孔虫に与える影響の定量化
Fox et al. (2020) Quantifying the Effect of Anthropogenic Climate Change on Calcifying Plankton. Scientific Report 10, 1620.
doi.org/10.1038/s41598-020-58501-w
2. Tomohisa KAMIYA (M1)
Title: 津波堆積物とストーム堆積物を区別するために何を用いるか
(What to use to distinguish tsunami and storm deposits)
3. Sando SAWA (D2)
Title: Transportation of water in the subduction zone
[Abstract]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(7 May 2020, No. 1507):
1. NAKAMURA Yuta (Dr. Muto in charge)
Renard, F. et al. (2019) Volumetric and shear processes in crystalline rock approaching faulting. PNAS 116, 16234-16239.
https://www.pnas.org/content/116/33/16234
2. Eranga Jayawickrama (D3)
Why brittle ductile behavior of oil and gas formations is important in unconventional drilling
[Abstract]