Archives(2023-)
発表次第(24 Apr. 2025, 1612):
1. SATO Kuga (B4)
オントンジャワヌイ火山活動と初期アプチアン海洋無酸素事変1aの同時性を示す多分野の証拠
(Multidisciplinary evidence for synchroneity between Ontong Java Nui volcanism and early Aptian oceanic anoxic event 1a)
Matsumoto, H., Shirai, K., Ishikawa, A., Ohkouchi, N., Ogawa, N.O., Tejada, M.L.G., Ando, A., Kuroda, J. and Suzuki, K., 2025. Multidisciplinary evidence for synchroneity between Ontong Java Nui volcanism and early Aptian oceanic anoxic event 1a. Science Advances, 11(9), p.eadt0204.
2. TSURUMACHI Yuki (B4)
極端な気候に対する大西洋子午面循環の耐性
(Continued Atlantic overturning circulation even under climate extremes)
Baker, J.A., Bell, M.J., Jackson, L.C., Vallis, G.K., Watson, A.J. and Wood, R.A., 2025. Continued Atlantic overturning circulation even under climate extremes. Nature, 638(8052), pp.987-994.
DOI: 10.1038/s41586-024-08544-0
3. MARUO Mizuki (M1)
古海洋学研究におけるGlobigerinoides ruber形態型の応用
(Paleoceanographic studies based on Globigerinoides ruber morphotypes)
Jayan, A.K., Sijinkumar, A.V. and Nath, B.N., 2021. Paleoceanographic significance of Globigerinoides ruber (white) morphotypes from the Andaman Sea. Marine Micropaleontology, 165, p.101996.
DOI: 10.1016/j.marmicro.2021.101996
Kearns, L.E., Searle‐Barnes, A., Foster, G.L., Milton, J.A., Standish, C.D. and Ezard, T.H.G., 2023. The influence of geochemical variation among Globigerinoides ruber individuals on Paleoceanographic reconstructions. Paleoceanography and Paleoclimatology, 38(4), p.e2022PA004549.
DOI: 10.1029/2022PA004549
4. HOSOGAYA Kohei (D3)
海洋無酸素事変1bの解明に向けて
(Toward understanding Ocean Anoxic Event 1b)
Wang, Y., Bodin, S., Blusztajn, J.S., Ullmann, C. and Nielsen, S.G., 2022. Orbitally paced global oceanic deoxygenation decoupled from volcanic CO2 emission during the middle Cretaceous Oceanic Anoxic Event 1b (Aptian-Albian transition). Geology, 50(11), pp.1324-1328.
DOI: 10.1130/G50553.1
Matsumoto, H., Kuroda, J., Coccioni, R., Frontalini, F., Sakai, S., Ogawa, N.O. and Ohkouchi, N., 2020. Marine Os isotopic evidence for multiple volcanic episodes during Cretaceous Oceanic Anoxic Event 1b. Scientific Reports, 10(1), p.12601.
DOI: 10.1038/s41598-020-69505-x
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(17 Apr. 2025, 1611):
1. KAJIMURA Kenta (M1)
沈み込みに伴う藍閃石の安定性とスラブ内地震
(The stability of subducted glaucophane and intra-slab earthquakes)
Bang, Y., Hwang, H., Liermann, H.P., Kim, D.Y., He, Y., Jeon, T.Y., Shin, T.J., Zhang, D., Popov, D. and Lee, Y., 2024. A role for subducting clays in the water transportation into the Earth’s lower mantle. Nature communications, 15(1), p.4428.
DOI: 10.1038/s41467-024-48501-z
An, M., Zhang, F., Yin, Z.Y., Huang, R., Elsworth, D. and Marone, C., 2024. Frictional strength and frictional instability of glaucophane gouges at blueschist temperatures support diverse modes of fault slip from slow slip events to moderate‐sized earthquakes. Journal of Geophysical Research: Solid Earth, 129(10), p.e2023JB028399.
DOI: 10.1029/2023jb028399
2. TAKENAWA Tomohiro (M2)
断層面の物質不均質性が断層運動に与える影響について
(Role of Material Heterogeneity in Fault Zone Dynamics)
Bedford, J.D., Faulkner, D.R. and Lapusta, N., 2022. Fault rock heterogeneity can produce fault weakness and reduce fault stability. Nature Communications, 13(1), p.326.
DOI: 10.1038/s41467-022-27998-2
Wang, K., Luo, H., He, J. and Carvajal, M., 2025. Soft barrier to megathrust rupture enabled by serpentinized mantle wedge: The Chile subduction zone. Earth and Planetary Science Letters, 650, p.119115.
DOI: 10.1016/j.epsl.2024.119115
3. SUDA Makoto (D2)
Brittle and ductile yielding in amorphous solids
Ozawa, M., Berthier, L., Biroli, G., Rosso, A., Tarjus, G., 2018. Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proceedings of the National Academy of Sciences of the United States of America, 115(26), p.6656.
Ninarello, A., Berthier, L., Coslovich, D., 2017. Models and Algorithms for the Next Generation of Glass Transition Studies. Physical Review X 7(2), p.021039.
DOI: 10.1103/PhysRevX.7.021039
Ozawa, M., Iwashita, Y., Kob, W., Zamponi, F., 2023. Creating bulk ultrastable glasses by random particle bonding. Nature Communications 14, p.113.
DOI: 10.1038/s41467-023-35812-w
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(10 Apr. 2025, 1610):
1. AKIOKA Soma(M1)
珪酸塩の海洋流入と珪藻の多様化への影響
(The impact of silicate ocean inflow on the diversification of diatoms)
Sophie Westacott, Noah J. Planavsky, Ming-Yu Zhao, and Pincelli M. Hull, 2021, Revisiting the sedimentary record of the rise of diatoms, PNAS, 118, 27, e2103517118.
Jan Taucher, Lennart T. Bach, A. E. Friederike Prowe, Tim Boxhammer, Karin Kvale & Ulf Riebesell, 2022, Enhanced silica export in a future ocean triggers global diatom decline, Nature, 605, 696–700.
DOI: 10.1038/s41586-022-04687-0
2. NAKANO Sota (M1)
津波数値計算における不確実性の影響
(The impact of uncertainty in tsunami numerical modeling)
Kotani, T., Tozato, K., Takase, S., Moriguchi, S., Terada, K., Fukutani, Y., Otake Y., Nojima. K., Sakuraba M., Choe Y., 2020, Probabilistic tsunami hazard assessment with simulation-based response surfaces, Coastal Engineering. 160, 103719.
DOI: 10.1016/j.coastaleng.2020.103719
Gibbons, S. J., Lorito, S., de la Asunción, M., Volpe, M., Selva, J., Macías, J., Sánchez-Linares, C., Brizuela, B., Vöge, M., Tonini, R., Lanucara, P., Glimsdal, S., Romano, F., Meyer, J. C., and Løvholt, F., 2022, The Sensitivity of Tsunami Impact to Earthquake Source Parameters and Manning Friction in High-Resolution Inundation Simulations, Front. Earth Sci., 9, 1412.
DOI: 10.3389/feart.2021.757618
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(30 Jan. 2025, 1609):
1. SAITO Marin (M1)
硬⾻海綿の⽣態と環境復元への利⽤
(Ecology of sclerosponges and their use in environmental reconstruction)
Macartney K J. , Pankey M. S. , Slattery M. , Lesser M P. , 2020, Trophodynamics of the sclerosponge Ceratoporella nicholsoni along a shallow to mesophotic depth gradient, Coral Reefs, 39, 1829‒1839.
DOI: 10.1007/s00338-020-02008-3
Waite A. J. , Klavans J. M. , Clement.A. C. , Murphy L N. ,Liebetrau V. , Eisenhauer A. , Weger R J. , and Swart.P K. , Observational and Model Evidence for an Important Role for Volcanic Forcing Driving Atlantic Multidecadal Variability Over the Last 600 Years, Geophys. Res. Lett, 47.
DOI: 10.1029/2020GL089428
2. OISHI Akihiro (M2)
最終氷期におけるダンスガード・オシュガーサイクルと同調する気候記録
(Climate records synchronized with the Dansgaard–Oeschger cycle during the last glacial period)
C. J. Batchelor, S. A. Marcott, I. J. Orland, F. He and R. L. Edwards ,2023, Decadal warming events extended into central North America during the last glacial period. Nature Geoscience 16, 257–261.
DOI: 10.1038/s41561-023-01132-3
Jingrui Li. Xuefa Shi , Shengfa Liu, Fangliang Li , Xiaoming Miao , Rui Jiang,2024,Sensitive response of erosion and weathering to the Indian Summer Monsoon changes in South Asia during Dansgaard-Oeschger oscillations. Palaeogeography, Palaeoclimatology, Palaeoecology 655, 112516.
DOI: 10.1016/j.palaeo.2024.112516
3. ARAKI Tsubasa (M2)
⿊潮続流の北上と北太平洋亜熱帯モード⽔への影響
(Poleward shift of the Kuroshio Extension and its impact on the North Pacific Subtropical Mode Water)
Kawakami, Y., Nakano, H., Urakawa, L. S., Toyoda, T., Aoki, K., and Usui, N., 2023,
Northward shift of the Kuroshio Extension during 1993–2021. Scientific Reports, 13, 16223.
DOI: 10.1038/s41598-023-43009-w
2. Wu, B., Lin, X., and Yu, L., 2021, Poleward shift of the Kuroshio extension front and its impact on the North Pacific subtropical mode water in the recent decades. Journal of Physical Oceanography, 51, 457-474.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(16 Jan. 2025, 1608):
1. TAKATSU Kosei (B3: Dr. TAKAYANAGI in charge)
前期白亜紀における海洋無酸素化の気候的閾値
(A climate threshold for ocean deoxygenation during the Early Cretaceous)
Bauer et al. (2024). A climate threshold for ocean deoxygenation during the Early Cretaceous. Nature, 1-5.
DOI: articles/s41586-024-07876-1
2. NAKAZAWA Tatsuki (M1)
シャコガイを用いた高時間分解能での環境復元に向けた研究
(Temporal interpolation technique using Giant clam shells)
Ma, X., Yan, H., Fei, H., Liu, C., Shi, G., Huang, E., Wang, Y., Qu, X., Lian, E. and Dang, H., 2020, A high-resolution δ18O record of modern Tridacna gigas bivalve and its paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 554, 109800
DOI: 10.1016/j.palaeo.2020.109800
Han, T., Wen, H., Zhao, N., Liu, C., Wang, G., Wang, Z. and Yan, H., 2024, A time window averaging method to mitigate the impact of shell growth trends on Tridacna δ18O records. Palaeogeography, Palaeoclimatology, Palaeoecology, 652, 112406
DOI: 10.1016/j.palaeo.2024.112406
3. GOITSE MOSEKIEMANG (D2)
LARGE IGNEOUS PROVINCES (LIPs) AS DRIVERS OF GLOBAL CLIMATE
CHANGE AND OCEAN ANOXIC EVENTS
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(26 Dec. 2024, 1607):
1. KANTSUKA Tomoya (B3: Prof. MUTO in charge)
高い間隙水圧を必要としない新しい弱断層モデル
(New weak fault model that does not require high pore pressure)
Y. Iio, 2024. New weak fault model that does not require high pore pressure. Earth and Planetary Science Letters, Volume 646, id.119003.
DOI: 10.1016/j.epsl.2024.119003
2. TSUTSUI Kyosuke (B3: Dr. SUZUKI in charge)
ジュラ紀の化石から明らかになった、初期の哺乳類の長期的な生活史
(Jurassic fossil juvenile reveals prolonged life history in early mammals)
Panciroli et al. 2024. Jurassic fossil juvenile reveals prolonged life history in early mammals. Nature 632, 815-822.
DOI: 10.1038/s41586-024-07733-1
3. KAWATAKE Kazuho (M1)
天文年代測定による白亜紀前期アプチアン期の年代決定
Charbonnier G., Boulila S., Spangenberg J. E., Vermeulen J., Galbrun B., 2024. Astrochronology of the Aptian stage and evidence for the chaotic orbital motion of Mercury. Earth and Planetary Science Letters, 610, 118104.
DOI: 10.1016/j.epsl.2023.118104
C. G. Leandro, J. F. Savian, M. V. L. Kochhann, D. R. Franco, R. Coccioni, F. Frontalini, S. Gardin, L. Jovane, M. Figueiredo, L. R. Tedeschi, L. Janikian, R. P. Almeida, R. I. F. Trindade, 2022, Astronomical tuning of the Aptian stage and its implications for age recalibrations and paleoclimatic events. Nature communication, 13, 2941.
DOI: 10.1038/s41467-022-30075-3
4. WAKO Ryota (D1)
レニウム-オスミウム(Re-Os)年代測定法の原油試料への応用
(Applications of rhenium-osmium (Re-Os) geochronology to crude oil samples)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(19 Dec. 2024, 1606):
1. ARAI Yu (B3: Dr. YAMADA in charge)
K-Pg境界直後約3万年間における年平均気温の安定的低下
O’Connor, L. K., et al., 2023. Steady decline in mean annual air temperatures in the first 30 k.y. after the Cretaceous-Paleogene boundary: Geology, 51, 486–490,
DOI: 10.1130/G50588.1
2. TAKEDA Atae (M1)
コンピューターシミュレーションを用いたドロマイト化における地球化学的プロセスの解明―地下深部埋蔵炭酸塩層の温度条件に関する研究例―
Joonsoo Kim, Yuki Kimura, Brian Puchala, Tomoya Yamazaki, Udo Becker, Wenhao Sun (2023) “Dissolution enables dolomite crystal growth near ambient conditions”, Science, 382.
Leilei Yang, Linjiao Yu, Keyu Liu, Jihui Jia, Guangyou Zhu, Qi Liu (2022) “ Coupled effects of temperature and solution compositions on metasomatic dolomitization: Significance and implication for the formation mechanism of carbonate reservoir”, Journal of Hydrology, 604.
DOI: 10.1016/j.jhydrol.2021.127199
Guangyou Zhu, Zhenlum Wei, Xiaoyong Wu, Yubiao Li (2023) “New insights into the dolomitization and dissolution mechanisms of dolomite–calcite (104)/(110) crystal boundary: An implication to geologic carbon sequestration process, Science of the Total Environment, 904.
DOI: 10.1016/j.scitotenv.2023.166273
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(12 Dec. 2024, 1605):
1. TAKEDA Ryo (B3: Dr. SUGAWARA in charge)
海洋に流入する火山噴火によって生じる高速で破壊的な密度流
(Fast and destructive density currents created by ocean-entering volcanic eruptions)
Clare, M. A. et al., 2023. Fast and destructive density currents created by
ocean-entering volcanic eruptions. Science 381, 1085–1092.
2. TSUKAHARA Tomoshi (B3: Dr. KUROYANAGI in charge)
Feng et al., 2024. High extinction risk in large foraminifera during past and future mass extinctions Sci. Adv. 10, eadj8223.
3. OISHI Akihiro (M1)
Cnacelled!
4. KITA Yukiko (D1)
粒成長速度論に影響する諸要素
(Factors that affect grain growth kinetics)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(5 Dec. 2024, 1604):
1. OYAMA Kakeru (B3: Dr. ASAMI in charge)
トルコの石筍に記録された最終氷期と最後から2 番目の氷期におけるD-O サイクル(Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye)
Held, F., Cheng, H., Edwards, R.L. et al., 2024. Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye. Nat Commun 15, 1183.
DOI: 10.1038/s41467-024-45507-5
2. WATANABE Kakeru (B3: Prof. TAKASHIMA in charge)
The early opening of the Equatorial Atlantic gateway and the evolution of Cretaceous peak warming
Dummann, W., et al., 2023. The early opening of the Equatorial Atlantic gateway and the evolution of Cretaceous peak warming: Geology, 51, 476–480.
DOI: 10.1130/G50842.1
3. HORIKAMI Shunnosuke (M1)
化石サンゴを用いた古環境変動に関する研究
(Introduction of research on paleoenvironmental changes from fossil coral skeletons)
Tao, S., Liu, K-b., Yan, H., Meng, M., Zhang, H., Wu, Y., Yu, K., Shi, Q., 2024. SST and ENSO activity 282,000 years ago reconstructed from Porites coral in the South China Sea. Global and Planetary Change, 237, 104455.
DOI:10.1016/j.gloplacha.2024.104455
Knebel, O., Felis, T., Asami, R., Deschamps, P., Kölling, M., Scholz, D., 2024. Last Deglacial Environmental Change in the Tropical South Pacific From Tahiti Corals. Paleoceanography and Paleoclimatology, 39.
4. YOSHII Kosuke (D1)
The late Miocene carbonate crashに関する研究レビュー
A review of recent research on the late Miocene carbonate crash
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––発表次第(28 Nov. 2024, 1603):
1. OHNO Yuu (B3: Dr. SUZUKI in charge)
ルテニウム同位体からチクシュルーブにおける衝突天体はC型小惑星であることが判明
(Ruthenium isotopes show the Chicxulub impactor was a carbonaceous-type asteroid)
Fischer-Godde et al., 2024. Ruthenium isotopes show the Chicxulub impactor was a carbonaceous-type asteroid. Science 385 (6710) 752-756.
2. SATO Kuga (B3: Prof. MUTO in charge)
地震がもたらす石英の圧電効果による金塊形成
(Gold nugget formation from earthquake-induced piezoelectricity in quartz)
Christopher R. Voisey et.al
Voisey, C.R., Hunter, N.J.R., Tomkins, A.G. et al., 2024. Gold nugget formation from earthquake-induced piezoelectricity in quartz. Nat. Geosci. 17, 920–925.
DOI: 10.1038/s41561-024-01514-1
3. OUCHI Sakurako (M1)
津波と洪水の極端な事象における堆積学的記録
(Sedimentary Records of Extreme Tsunami and Flood Events)
Araya, K., Dezileau, L., Muñoz, P., Maldonado, A., Condomines, M., Khalfaoui, O., Oyanadel-Urbina, P., and Araya, B. A., 2023. Reconstruction of extreme floods and tsunamis from coastal sedimentary archives in Los Choros, Coquimbo region, 28°S, Chile. Nat. Hazards, 120, 11323–11347.
DOI: 10.1007/s11069-024-06644-8
Yamada, M., Naruse, H., Kuroda, Y., Kato, T., Matsuda, Y., Shinozaki, T., and Tokiwa, T., 2021, Features of crevasse splay deposits and sedimentary processes associated with levee breaching due to the October 2019 flood of the Chikuma River, Central Japan. Nat. Hazards, 119, 95–124.
DOI: 10.1007/s11069-023-06122-7
4. Supadee Krisana (M1)
Recent research progress to understand the variation of East Asian Monsoon via the modulation of oscillating systems’ teleconnection and their mechanism frameworks
Hau, N.-X. et al. (2023) 'The modulation of Pacific Decadal Oscillation on ENSO-East Asian summer monsoon relationship over the past half-millennium,' The Science of the Total Environment, 857, p.159437.
DOI: 10.1016/j.scitotenv.2022.159437
Ma, T. and Chen, W. (2023) 'Recent progress in understanding the interaction between ENSO and the East Asian winter monsoon: A review,' Frontiers in Earth Science, 11.
DOI: 10.3389/feart.2023.1098517
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(21 Nov. 2024, 1602):
1. MURAMATSU Kotaro (B3: Dr. TAKAYANAGI in charge)
最終氷期極大期の北大西洋海流の深さと強さ
(Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum)
Wharton et al., 2024. Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum. Nature, 1–6.
DOI: 10.1038/s41586-024-07655-y
2. MUTO Monami (B3: Prof. TAKASHIMA in charge)
ケルゲレン火山活動により引き起こされたOAE2
(Oceanic Anoxic Event 2 triggered by Kerguelen volcanism)
Dummann, W., et al., 2023. The early opening of the Equatorial Atlantic gateway and the evolution of Cretaceous peak warming: Geology, v. 51, p. 476–480.
DOI: 10.1130/G50842.1
3. TAKENAWA Tomohiro (M1)
断層すべり面の形態とナノ粒子の存在について
Ortega-Arroyo, D., & Pec, M., 2023. A closer look into slickensides: Deformation on and under fault surfaces. Journal of Structural Geology, 171, 104860.
DOI: 10.1016/j.jsg.2023.104860
Huang, J., Zhang, B., Hu, W., Zou, J., He, H., & Zhang, J., 2024. Bonded nanoparticles restrengthen faults during earthquake slip. Journal of Structural Geology, 186, 105215.
DOI: 10.1016/j.jsg.2024.105215
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(14 Nov. 2024, 1601):
1. TSURUMACHI Yuki (B3: Dr. YAMADA in charge)
中国南部四川盆地の恐竜化石に対するU-Pb年代測定
Qi, L. et al., 2024. In situ U-Pb dating of Jurassic dinosaur bones from Sichuan Basin, South China. Geology, 52 (3): 216–221.
DOI: 10.1130/G51872.1
2. MIZUKI Yosuke (B3: Dr. SUGAWARA in charge)
近似ベイズ計算を利用したイースター島における古人口動態の分析
DiNapol, R. J. et al, 2021. Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island). NATURE COMMUNICATIONS, 12: 3939
DOI: 10.1038/s41467-021-24252-z
3. OISHI Akihiro (M2)
canceled !!
4. SHIMADA Tomoya (M2)
2008 年汶川地震 龍門山断層帯中の炭質物
(Carbonaceous materials in the Longmenshan fault zone of the 2008 Wenchuan earthquake)
Dang & Zhou, 2022, Structural fabrics of carbon grains in a natural fault gouge reactivated by the 2008 Wenchuan earthquake. Terra Nova 35, 2, 91-100.
DOI: 10.1111/ter.12633
Shi et al., 2024, Experimental investigation on the origin of carbonaceous materials in the fault zone of the Wenchuan earthquake. Earthquake Science 37, 189-199.
DOI: 10.1016/j.eqs.2024.03.001
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(7 Nov. 2024, 1600):
1. HAKUMURA Shu (B3: Dr. ASAMI in charge)
人新世の国際境界模式層断面(GSSP)の候補地点および参考地点
Waters, C. N., Turner, S. D., Zalasiewicz, J., & Head, M. J., 2023. Candidate sites and other reference sections for the Global boundary Stratotype Section and Point of the Anthropocene series. The Anthropocene Review, 10(1), 3-24.
DOI: 10.1177/20530196221136422
2. HASHIMOTO Yuri (M2)
環境DNA解析の浮遊性有孔虫研究への応用
(Application of environmental DNA analysis for planktonic foraminiferal research)
Pawłowska, J., Wollenburg, J. E., Zajączkowski, M., & Pawlowski, J., 2020. Planktonic foraminifera genomic variations reflect paleoceanographic changes in the Arctic: evidence from sedimentary ancient DNA. Scientific Reports, 10(1), 15102.
DOI: 10.1038/s41598-020-72146-9
Maeda, A., Nishijima, M., Iguchi, A., Ota, Y., Suzumura, M., & Suzuki, A., 2024. Environmental DNA metabarcoding of foraminifera for biological monitoring of bottom water and sediments on the Takuyo-Daigo Seamount in the northwestern Pacific. Frontiers in Marine Science, 10, 1243713.
DOI: 10.3389/fmars.2023.1243713
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(31 Oct. 2024, 1599):
1. MOTOKI Takumi (B3: Dr. KUROYANAGI in charge)
新生代の環境変化に対する海洋プランクトンの生物地理的応答
Swain, A., Woodhouse, A., Fagan, W.F. et al., 2024. Biogeographic response of marine plankton to Cenozoic environmental changes. Nature 629, 616–623.
DOI: 10.1038/s41586-024-07337-9
2. MITO Yuga (M2)
姶良カルデラのカルデラ形成噴火に至るマグマ系の発達に関する地球化学的研究
Geochemical research on the evolution of the magmatic system leading to a caldera-forming eruption of the Aira Caldera, Japan
Nobuo Geshi, Ikuko Yamada, Keiko Matsumoto, Ayumu Nishihara & Isoji Miyagi, 2020, Accumulation of rhyolite magma and triggers for a caldera-forming eruption of the Aira Caldera, Japan, Bulletin of Volcanology, Volume 82, article number 44
DOI: 10.1007/s00445-020-01384-6
Takeshi Kuritani, 2023, Geochemical constraints on the evolution of the magmatic system leading to catastrophic eruptions at Aira Caldera, Japan, Lithos, Volumes 450–451
DOI: 10.1016/j.lithos.2023.107208
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(17 Oct. 2024, 1598):
1. INOSE Daiki (M1)
津波堆積物の堆積学的・地球化学的特徴の紹介
(Introduction of sedimentological and geochemical characteristics of tsunami deposits)
後藤和久,菅原大助,2021,津波堆積学の進展.地質学雑誌,127,199–214
Matsumoto, D., Sawai, Y., Tanigawa, K., Namegaya, Y., Shishikura, M., Kagohara, K., Fujiwara, O., Shinozaki, T., 2023, Sedimentary diversity of the 2011 Tohoku-oki tsunami deposits on the Sendai coastal plain and the northern coast of Fukushima Prefecture, Japan. Progress in Earth and Planetary Science, 10:23, 1-30
Nanayama, F., Shigeno, K., Satake, K., Shimokawa, K., Koitabashi, S., Miyasaka, S., Ishii, M., 2000, Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sedimentary Geology, 135, 255–264.
Ratnayake, A.S., Wijewardhana, T.D.U., Haraguchi, T., Goto, K., Ratnayake, N.P., Tetsuka, H., Yokoyama, Y., Miyairi, Y., Attanayake, A.M.A.N.B, 2023, Sedimentological observations and geochemical characteristics of paleo-tsunami deposits along the east coast of Sri Lanka in the Indian Ocean. Quaternary International, 661, 49-59
澤井祐紀,2012,地層中に存在する古津波堆積物の調査.地質学雑誌,118,535–558.
2. TOMARU Taiga (D1)
白亜紀前期の古環境変動に関する研究の紹介
(Introduction of research on early cretaceous environmental changes)
Erba et al., 2004, Geology, 32(2), 149-152.
Westermann et al., 2010, EPSL, 290(1-2), 118-131.
Cavalheiro et al., 2021, Nature communications, 12(1), 5411.
Martinez et al, 2023, Earth-Science Reviews, 104356.
Percival et al., 2023, Geology ,51(8): 753-757.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(25 July 2024, 1597):
1. YOKOYAMA Hiroaki (D3)
HR-EBSD による地質学的物質の解析例の紹介
(Introduction of examples of analysis of geological materials by HR-EBSD)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(11 July 2024, 1596):
1. TSUJIMOTO Daiki (M1)
中期中新世,九州パラオ海嶺はどこにあったのか?
(Where was the Kyushu-Palau Ridge in the Middle Miocene?)
Shinjoe et al., 2023, Geochronological and petrological investigations of Miocene felsic igneous rocks in the Amakusa Islands, southwest Japan: Possible extension of the Setouchi Volcanic Belt, Island Arc, 33 (1) e12506.
Motohashi et al., 2023, Middle Miocene forearc alkaline magmatism in Amami-Oshima Island, central Ryukyu Arc: implications for paleoreconstruction of Shikoku Basin, Earth, Planets and Space volume 75, Article number: 9.
DOI : 10.1186/s40623-021-01490-5
2. FURUKAWA Miho (D2)
地球科学におけるグラフ理論とその応用
(Graph theory and its applications in earth sciences)
Tang, Y.B., Zhao, J.Z., Bernabé, Y., Li, M., 2021. Fluid flow concentration on preferential paths in heterogeneous porous media: Application of graph theory. Journal of Geophysical Research: Solid Earth 126, e2021JB023164.
Dunant, A., Bebbington, M., Davies, T., 2021. Probabilistic cascading multi-hazard risk assessment methodology using graph theory, a New Zealand trial. International Journal of Disaster Risk Reduction 54, 102018.
DOI:10.1016/j.ijdrr.2020.102018
Jones, R., Safta, C., Frankel, A., 2023. Deep learning and multi-level featurization of graph representations of microstructural data. Computational Mechanics 72, 57–75.
DOI:10.1007/s00466-023-02300-3
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(4 July 2024, 1595):
1. TAKAHASHI Kousuke (B4: Dr. ASAMI in charge)
氷期の海水準変動に伴う千年スケールでの秋季東南アジアモンスーン降雨の変動
Patterson, Elizabeth W, et al., 2023. Glacial changes in sea level modulated millennial-scale variability of Southeast Asian autumn monsoon rainfall
Glacial changes in sea level modulated millennial-scale variability of Southeast Asian autumn monsoon rainfall. PNAS, 120 (27), e2219489120.
DOI : 10.1073/pnas.2219489120
2. NAKANO Sota (M1)
粒度分析と順解析を組み合わせた津波堆積物研究の紹介
(Introduction of tsunami deposit research combining grading analysis and forward modeling)
Bosnic, I., Costa, P.J.M., Dourado, F., La Selle, S., Gelfenbaum, G., 2021. Onshore flow characteristics of the 1755 CE Lisbon tsunami: linking forward and inverse numerical modeling. Mar. Geol. 434, 106432.
DOI: 10.1016/j.margeo.2021.106432
Hill, J., Rush, G., Peakall, J., Johnson, M., Hodson, L. & Barlow, N., 2023. Resolving tsunami wave dynamics: Integrating sedimentology and numerical modelling. Depositional Record. 9, 1046-1065.
DOI: 10.1002/dep2.247
3. TAMIGAWA Daichi (M2)
テフラの主成分元素組成・微量元素組成による識別・対比
(Identification and correlation of tephra by major and trace element composition)
Tabito Matsu’ura., Junko Komatsubara., Minoru Ikehara., 2023, Improving tephrostratigraphy and cryptotephrostratigraphy since 1 Ma of Hole U1437B in the Izu-Bonin arc, NW Pacific: Differentiation of widespread tephras with similar shard chemistries. Quaternary Science Reviews, 319, 108305.
DOI: 10.1016/j.quascirev.2023.108305
Tabito Matsu’ura., Junko Komatsubara., 2024, Ontake-Katamachi tephra: Marine-terrestrial correlation of a time marker of marine isotopic stage 5b in NE Japan, the Japan Sea, and the NW Pacific. Journal of Asian Earth Sciences, 259, 105876.
DOI: 10.1016/j.jseaes.2023.105876
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(27 June 2024, 1594):
1. MARUO Mizuki (B4: Prof. MUTO in charge)
巨大地震における地震後・地震間の地殻変動の移り変わりにはどれほど時間がかかるのか。包括的な地震サイクルの視点に向けた研究
Shaoyang Li & Ling Chen, 2023. How Long Can the Postseismic and Interseismic Phases of Great Subduction Earthquake Sustain? Toward an Integrated Earthquake-Cycle Perspective. Geophysical Research Letters, e2023GL103976.
DOI : 10.1029/2023GL103976
2. TAKAHASHI Keigo (B4: Dr. SUZUKI in charge)
ユニークに保存された消化管の内容物から, 三葉虫の古生理学が解明される
JPetr Kraft, Valéria Vaškaninová, Michal Mergl, Petr Budil, Oldřich Fatka & Per E. Ahlberg, 2023. Uniquely preserved gut contents illuminate trilobite palaeophysiology. Nature, 622, 545–551.
DOI: 10.1038/s41586-023-06567-7
3. TOGASHI Kotomi (M2)
鉱物の化学組成からマグマを推測する
(Evaluate magma systems based on chemical compositions of minerals)
Chen Z. et al., 2020. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales, Lithos, 376–377, 105776.
DOI: 10.1016/j.lithos.2020.105776
Hao L. et al., 2024. Diverse apatite geochemical compositions in early Paleozoic granitoids of the North Qinling orogen, China: Insights into their petrogenesis and magma sources, Lithos, 480–481, 107663.
DOI: 10.1016/j.lithos.2024.107663
4. YOKOYAMA Hiroaki (D3) Canceled!
HR-EBSD による地質学的物質の解析例の紹介
(Introduction of examples of analysis of geological materials by HR-EBSD)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(20 June 2024, 1593):
1. MIKAMI Yuya (B4: Dr. SUGAWARA in charge)
南極大陸における氷河崩壊に伴う内部津波発生と海洋混合
Meredith, M. P., Inall, M. E., Brearley, J. A., Ehmen, T., Sheen, K., Munday, D., et al., 2022. Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica. Science Advances, 8(47), eadd0720.
DOI : 10.1126/sciadv.add0720
2. OUE Yuta (B4: Dr. KUROYANAGI in charge)
プランクトンの生物地理学から明らかになった氷河期北大西洋の強い温度勾配
Jonkers, L., Laepple, T., Rillo, M.C. et al., 2023. Strong temperature gradients in the ice age North Atlantic Ocean revealed by plankton biogeography. Nat. Geosci. 16, 1114–1119.
DOI: 10.1038/s41561-023-01328-7
3. TSUCHIYA Mayu (M2)
地震活動に関連したラドン濃度異常の様々な検知手法
(Radon concentration anomalies in water and soil associated with seismic activity)
Chetia, T., Baruah, S., Dey, C. et al., 2022. Seismic induced soil gas radon anomalies observed at multiparametric geophysical observatory, Tezpur (Eastern Himalaya), India: an appraisal of probable model for earthquake forecasting based on peak of radon anomalies. Nat. Hazards. 111, 3071–3098.
DOI: 10.1007/s11069-021-05168-9
Soldati, G., Cannelli, V. & Piersanti, A., 2020. Monitoring soil radon during the 2016–2017 central Italy sequence in light of seismicity. Sci Rep 10, 13137.
DOI: 10.1038/s41598-020-69821-2
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(6 June 2024, 1592):
1. UMAKOSHI Hiroki (B4: Dr. SUZUKI in charge)
雲霧林における植物分岐群の反復放散
Donoghue, M. J., et al., 2022. Replicated radiation of a plant clade along a cloud forest archipelago. Nature Ecology & Evolution, 6, 1318–1329.
DOI: 10.1038/s41559-022-01823-x
2. HARA Yusuke (B4: Dr. TAKAYANAGI in charge)
天⽂学的に較正した過去6600 万年間を通じた地球の気候記録とその予測可能性
Westerhold, T., et al., 2020. An astronomically dated record of earth’s climate and its predictability over the last 66 million years. Science, 369, 1383-1387.
3. YOSHIBE Momo (M2)
浅海炭酸塩堆積物の堆積史に関する研究
(Study on the depositional history of shallow water carbonates sediments)
Murray, S. T., et al., 2020. Geochemical fingerprints of dolomitization in Bahamian carbonates: Evidence from sulphur, calcium, magnesium and clumped isotopes. Sedimentology.
Smith, M. E. & Swart, P. K., 2022. The influence of diagenesis on carbon and
oxygen isotope values in shallow water carbonates from the Atlantic and Pacific:
Implications for the interpretation of the global carbon cycle. Sedimentary Geology.
DOI:10.1016/j.sedgeo.2022.106147
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(23 May 2024, 1591):
1. OGITA Kosei (B4: Dr. YAMADA in charge)
棘皮動物の進化の原動力としての方解石-アラゴナイトの海とは? ~実験的見識とディープタイム・デカップリング~
Cole, S.R., et al., 2023. Calcite-aragonite seas as a driver of echinoderm evolution? Experimental insight and deep-time decoupling: Geology, v. 51, p. 1091–1095.
DOI: 10.1130/G51444.1
2. HARIGAI Shunto (B4: Dr. SUGAWARA in charge)
Cardenas, B. T., et al., 2022. Martian landscapes of fluvial ridges carved from ancient sedimentary basin fill. Nature Geoscience, v. 15, p. 871–877.
DOI: 10.1038/s41561-022-01058-2
3. KOGI Keisuke (M1)
実験で得られた、地震本震前に確認されるb値の減少メカニズム
(Experimentally confirmed mechanism of decrease in b-value before the main shock of the earthquake)
Bolton, D.C., Shreedharan, S., Rivière, J., Marone, C., 2021. Frequency-magnitude statistics of laboratory foreshocks vary with shear velocity, fault slip rate, and shear stress. J. Geophys. Res., Solid Earth 126, e2021JB022175.
DOI: 10.1029/2021JB022175
Yamashita, F., Fukuyama, E., Xu, S., Kawakata, H., Mizoguchi, K., & Takizawa, S., 2021. Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault. Nature Communications, 12(1), 4302.
DOI: 10.1038/s41467-021-24625-4
4. HOSOGAYA Kohei (D2)
海洋無酸素事変と大規模火成活動の関係:鉛同位体比とオスミウム同位体比による海洋無酸素事変1aと超オントンジャワの解析
(Relationship between Ocean Anoxic Event 1a and Large Igneous Provinces : Ocean Anoxic Event 1a and Ontong Java Nui based on lead isotope and osumium isotope analysis)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(16 May 2024, 1590):
1. AKIOKA Soma (B4: Dr. TAKAYANAGI in charge)
Stukel, M. R., et al., 2023, Carbon sequestration by multiple biological pump pathways in a coastal upwelling biome, nature communications, 14.
DOI: 10.1038/s41467-023-37771-8
2. HARA Kairi (B4: Dr. YAMADA in charge)
Lebrec, U., et al., 2023, Discovery of Holocene ooid shoals in a siliciclastic delta, De Grey River, North West Shelf, Australia: Geology, v. 51, p. 366–371.
DOI: 10.1130/G50840.1
3. MIURA Akito (M1)
地下水中ラドン濃度変動の時系列解析(Time series analysis of groundwater radon concentration variations)
Zhao, Y., et al., 2021, A case study of 10 years groundwater radon monitoring along the eastern margin of the Tibetan Plateau and in its adjacent regions: Implications for earthquake surveillance. Appl. Geochem., 131, 105014.
DOI: 10.1016/j.apgeochem.2021.105014
Fu, H. and Hu, X., 2022, Identification of groundwater radon precursory anomalies by critical slowing down theory. water, 14, 541.
DOI: 10.3390/w14040541
4. YOSHIIKE Kanano (M2)
完新世堆積物の調査におけるGPR活用方法の課題と改善
Buck, L. and Bristow, C. S., 2024, Using ground-penetrating-radar to investigate deposits from the Storegga slide tsunami and other sand sheets in the Shetland Island, UK. Journal of the Geological Society, 181.
DOI: 10.1144/jgs2023-042
Cavallotto, J. L., et al., 2020, Shallow geophysical methods for recognition of holocene sedimentary sequences in the southern coastal plain of the Río de la Plata (Argentina). Journal of South American Earth Sciences, 102, 102662.
DOI: 10.1016/j.jsames.2020.102662
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(25 Apr. 2024, 1589):
1. NAKAMURA Hibiki (B4: Prof. MUTO in charge)
Toffol, G. et al., 2024. On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault. Sci. Adv., 10, eadi8533.
2. YAMAGISHI Komei (B4: Dr. KUROYANAGI in charge)
Hupp, B. N., Kelly, D. C. and Williams, J. W., 2022, Isotopic filtering reveals high sensitivity of planktic calcifiers to Paleocene-Eocene thermal maximum warming and acidification. PNAS, 119, e2115561119.
3. YAMASHITA Tomohiro (B4: Dr. ASAMI in charge)
McCulloch, M.T., Winter, A., Sherman, C.E. et al., 2024. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C. Nat. Clim. Chang. 14, 171–177.
DOI: 10.1038/s41558-023-01919-7
4. ODA Hiroto (M2)
古環境指標としてのシャコガイ研究:現状と課題
Giant clam shells as a paleoclimate proxy in the 2000s
Elliot, M., Welsh, K., Chilcott, C., McCulloch, M., Chappell, J. and Ayling, B., 2009: Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: potentialapplications in paleoclimate studies. Palaeogeography, Palaeocli- matology, Palaeoecology, vol.280, p. 132–142.
Liu, C., Yan, H., Wang, G., Zhao, L., Hu, Y., Zhou, P., Luo, F., Yang, H., Dodson, J., 2021. Species specific Sr/Ca-δ18O relationships for three Tridacnidae species from the northern South China Sea.
Chem. Geol. 584, 120519
https://doi.org/10.1016/j. chemgeo.2021.120519.
Yan, H., Shao, D., Wang, Y. and Sun, L., 2013: Sr/Ca profile of long- lived Tridacna gigas bivalves from South China Sea: A new high- resolution SST proxy. Geochimica et Cosmochimica Acta, vol.112, p. 52–65.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(18 Apr. 2024, 1588):
1. NAKAMURA Hibiki(B4: Prof. MUTO in charge)→Postponed to April 25
Toffol, G. et al., 2024. On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault. Sci. Adv., 10, eadi8533.
2. KAJIMURA Kenta (B4: Prof. TAKASHIMA in charge)
During, M. A. D., et al., 2022. The Mesozoic terminated in boreal spring. Nature, 603, 91–94.
DOI: 10.1038/s41586-022-04446-1
3. SATO Yuito (M2)
粒子形状解析を活用したイベント堆積物の側方対比及び供給源推定
Lateral correlation and sediment source estimation of event deposits using particle shape analysis.
Ishimura D. & Yamada K., 2021. Integrated lateral correlation of tsunami deposits during the last 6000 years using multiple indicators at Koyadori, Sanriku Coast, northeast Japan. Quat. Sci. Rev., 256, 106834.
DOI: 10.1016/j.quascirev.2021.106834
Gresina, F. et al., 2023. Morphological analysis of mineral grains from different sedimentary environments using automated static image analysis. Sediment. Geol., 455, 106479.
DOI: 10.1016/j.sedgeo.2023.106479
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(11 Apr. 2023, 1587)
1. MIKAMI Yuya (B4: Dr. YAMADA in charge)
Spötl, C., et al. (2021) Stable isotope imprint of hypogene speleogenesis: Lessons from Austrian caves. Chemical Geology, 572, 120209.
DOI: 10.1016/j.chemgeo.2021.120209
2. MARUO Mizuki (B4: Dr. SUZUKI in charge)
Brocks, J. J., et al. (2023) Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773 .
DOI:10.1038/s41586-023-06170-w
3. MASUDA Hidetoshi (D1)
Generation, propagation, inundation, and sediment transport processes of the tsunami following the 2024 Noto Peninsula earthquake
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(11 Jan. 2024, 1585):
1. KAJIMURA Kenta(B3: Dr. ASAMI in charge)
de Graaf, S., Vonhof, H.B., Reijmer, J.J.G., Feenstra, E., Mienis, F., Prud'Homme, C., Zinke, J., van der Lubbe, J.H.J.L., Swart, P.K. and Haug, G., 2022, Analytical Artefacts Preclude Reliable Isotope Ratio Measurement of Internal Water in Coral Skeletons. Geostand Geoanal Res, 46: 563-577.
DOI: 10.1111/ggr.12445
2. OHUE Yuta(B3: Dr. SAWA in charge)
Margo E. Regier, Karen V. Smit, Thomas B. Chalk, Thomas Stachel, Richard A. Stern, Evan M. Smith, Gavin L. Foster, Yannick Bussweiler, Chris DeBuhr, Antony D. Burnham, Jeff W. Harris, D. Graham Pearson, 2023, ‘Boron isotopes in blue diamond record seawater-derived fluids in the lower mantle’ Earth and Planetary Science Letters 602 (2023) 117923
DOI: 10.1016/j.epsl.2022.117923
3. AKIOKA Soma(B3: Dr. SAWA in charge)
Siegler, M.A., Feng, J., Lehman-Franco, K. et al., 2023, Remote detection of a lunar granitic batholith at Compton– Nature 620, 116–121
DOI: 10.1038/s41586-023-06183-5
4. SHIMADA Tomoya(M1)
Interaction and application of graphene oxide and natural minerals
酸化グラフェンと天然鉱物の相互作用と応用
Lu, X., Lu, T., Zhang, H., Shang, Z., Chen, J., Wang, Y., Li, D., Zhou, Y. & Qi, Z., 2019, Effects of solution chemistry on the attachment of graphene oxide onto clay minerals. Environ Sci Process Impacts, 21, 506–513.
DOI: 10.1039/C8EM00480C
Xuan, Y., Li, D., Pang, S. & An, Y., 2023, Recent advances in the applications of graphene materials for the oil and gas industry. RSC Adv., 13, 23169–23180.
DOI: 10.1039/D3RA02781C
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(4 Jan. 2023, 1584):
1. YAMAGISHI Komei(B3: Dr. SUGAWARA in charge)
Pilarczyk, J. E., Sawai, Y., Namegaya, Y., Tamura, T., Tanigawa, K., Matsumoto, D., Shinozaki, T., Fujiwara, O., Shishikura, M., Shimada, Y., Dura, T., Horton, B. P., Parnell, A. C. and Vane, C. H., 2021, A further source of Tokyo earthquakes and Pacific Ocean tsunamis. Nat. Geosci., 14, 796– 780.
DOI: 10.1038/s41561-021-00812-2
2. ARAKI Tsubasa(M1)
Reproduction of mode waters using the analyzed climate models
気候モデルの解析結果を⽤いたモード⽔の再現
Hong, Y., Du, Y., Xia, X., Xu, L., Zhang, Y., & Xie, S. P., 2021, Subantarctic mode water and its long-term change in CMIP6 models. Journal of Climate, 34, 9385-9400.
DOI: 10.1175/JCLI-D-21-0133.s1
Qiu, Z., Wei, Z., Nie, X., & Xu, T., 2021, Southeast Indian Subantarctic mode water in the CMIP6 coupled models. Journal of Geophysical Research: Oceans, 126, e2020JC016872.
DOI: 10.1029/2020JC016872
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(21 Dec. 2023, 1583):
1. TAKAHASHI Kosuke(B3: Prof. Iryu in charge)
Cooper, A., Turney, C. S., Palmer, J., Hogg, A., McGlone, M., Wilmshurst, J., ... & Zech, R., 2021, A global environmental crisis 42,000 years ago. Science, 371(6531), 811-818.
2. TSUCHIYA Mayu(M1)
地震活動に関連した水および土壌中のラドン濃度異常
Radon concentration anomalies in water and soil associated with seismic activity
Külahcı, F. & Çiçek, S., 2015, Time-series analysis of water and soil radon anomalies to identify micro–macro-earthquakes. Arab J Geosci, 8, 5239-5246.
DOI: 10.1007/s12517-014-1513-9
Karastathis, V, K., Eleftheriou, G.,Kafatos, M., Tsinganos, K., Tselentis, G., Mouzakiotis, E. & Ouzounov, D., 2022, Observations on the stress related variations of soil radon concentration in the Gulf of Corinth, Greece. Sci Rep, 12, 5442
DOI: 10.1038/s41598-022-09441-0
3. HASHIMOTO Yuri(M1)
気候変動に対する浮遊性有孔虫の応答
Response of planktic foraminifera to climate change
Strack, A., Jonkers, L., C. Rillo, M., Hillebrand, H., & Kucera, M., 2022, Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nature Ecology & Evolution, 6(12), 1871-1880.
DOI: 10.1038/s41559-022-01888-8
Kinoshita, S., Wang, Q., Kuroyanagi, A., Murayama, M., Ujiié, Y., & Kawahata, H., 2022, Response of planktic foraminiferal shells to ocean acidification and global warming assessed using micro-X-ray computed tomography. Paleontological Research, 26(4), 390-404.
DOI: 10.2517/PR200043
4. FURUKAWA Miho(D1)
マイクロCTで見る多孔質岩石内部の空隙構造
Pore structures inside porous rocks captured by micro-CT
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(14 Dec. 2023, 1582):
1. MIKAMI Yuya(B3: Dr. YAMADA in charge)
Spötl, C., Dublyansky, Y., Koltai, G., Honiat, C., Plan, L., & Angerer, T., 2021, Stable isotope imprint of hypogene speleogenesis: Lessons from Austrian caves. Chemical Geology, 572, 120209.
DOI: 10.1038/s41561-023-01227-x
2. YAMASHITA Tomohiro(B3: Prof. TAKASHIMA in charge)
Tejada, M.L.G., Sano, T., Hanyu, T. et al., 2023, New evidence for the Ontong Java Nui hypothesis. Sci Rep 13, 8486.
DOI: 10.1038/s41598-023-33724-9
4. OIKAWA Kazuma(D3)
Clumped-isotope thermometer of brachiopod
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(7 Dec. 2023, 1581):
1. HARIGAI Syunto(B3: Dr. KUROYANAGI in charge)
SVermassen, F., O’Regan, M., de Boer, A. et al., 2023, A seasonally ice-free Arctic Ocean during the Last Interglacial. Nat. Geosci. 16, 723–729.
DOI: 10.1038/s41561-023-01227-x
2. HARA Kairi(B3: Prof. TAKAYANAGI in charge)
Zhang, S., Yu, Z., Wang, Y. et al., 2022. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years. Nature Communications, 13, 5457.
DOI: s41467-022-33206-y
3. TANIGAWA Daichi(M1)
テフラの保存環境・時間経過における変化
Changes in tephra storage environment and over time
Jenni L. Hopkins., Richard J. Wysoczanski., Alan R. Orpin., Jamie D. Howarth., Lorna J. Strachan., Ryan Lunenburg.,...Sian Camp., 2020, Deposition and preservation of tephra in marine sediments at the active Hikurangi subduction margin. Quaternary Science Reviews, 247, 106500.
DOI: 10.1016/j.quascirev.2020.106500
N.A. Cutler., R.T. Streeter., S.L. Engwell., M.S. Bolton., B.J.L. Jensen., A.L. Dugmore., 2020, How does tephra deposit thickness change over time? A calibration exercise based on the 1980 Mount St Helens tephra deposit. Journal of Volcanology and Geothermal Research, 399, 106883
DOI: 10.1016/j.jvolgeores.2020.106883
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(30 Nov. 2023, 1580):
1. ARAKANE Miki(M2)
淡水真珠の地球化学的・鉱物学的情報と湖の季節的環境変化
Coupling Geochemical and Mineralogical data of Freshwater Nacre to Seasonal Environmental Changes in Kentucky Lake
Farfan, G. A., Zhou, C., Valley, J. W. and Orland, I. J. 2021 Coupling mineralogy and oxygen isotopes to seasonal environmental shifts recorded in modern freshwater pearl nacre from Kentucky Lake. Geochemistry, Geophysics, Geosystems , 22 (12),
DOI: 10.1029/2021GC009995
Farfan, G. A., Bullock, E. S., Zhou, C. and Valley, J. W. W., 2023 Geochemical and mineralogical proxies beyond temperature: Autumn seasons trapped in freshwater nacre. Geochimica et Cosmochimica Acta , 355 , 126 137.
DOI: 10.1016/j.gca.2023.06.033
2. KITA Yukiko(M2)
オリビン+フェロペリクレース合成多結晶体用いた変形実験における第2相の影響
The Effect of Secondary Phase on the Deformation of Olivine + Ferropericlase Aggregates
Harison S. Wiesman, Mark E. Zimmerman, David L. Kohlstedt, 2023, The Effect of Secondary‐Phase Fraction on the Deformation of Olivine + Ferropericlase Aggregates: 1. Microstructural Evolution, Journal of Geophysical Research: Solid Earth, 128, 4.
DOI: 10.1029/2022JB025723
Harison S. Wiesman, Mark E. Zimmerman, David L. Kohlstedt, 2023, The Effect of Secondary‐Phase Fraction on the Deformation of Olivine + Ferropericlase Aggregates: 2. Mechanical Behavior, Journal of Geophysical Research: Solid Earth, 128, 4.
DOI: 10.1029/2022JB025724
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(16 Nov. 2023, 1579):
1. HARA Yusuke(B3: Prof. MUTO in charge)
Xin Cui, Zefeng Li and Yan Hu., 2023. Similar seismic moment release process for shallow and deep earthquakes. Nature Geoscience, 16, pp. 454-460.
DOI: 10.1038/s41561-023-01176-5
2. OTSUBO Takumi(M2)
カーニアン多雨事象に関する近年の層序学的検討
The recent stratigraphic research on the Carnian Pluvial Episode
Lu, J., Zhang, P., Dal Corso, J., Yang, M., Wignall, P. B., Greene, S. E., ... & Hilton, J., 2021. Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proceedings of the National Academy of Sciences, 118(40), e2109895118.
Tomimatsu, Y., Nozaki, T., Onoue, T., Matsumoto, H., Sato, H., Takaya, Y., ... & Rigo, M., 2023, Pelagic responses to oceanic anoxia during the Carnian Pluvial Episode (Late Triassic) in Panthalassa Ocean. Scientific reports, 13(1), 16316.
DOI: 10.1038/s41598-023-43525-9
3. WATANABE Kaito(M2)
地質温度計を⽤いたマイロナイトの変形温度の推定
Estimation of Deformation Temperature of Mylonite using Geothermometer.
Zhou, B.J., Liu, J.L., Chen, X.Y. and Hou, C.R., 2022, Fluid-enhanced grain-size reduction of K-feldspar from a natural middle crustal shear zone in northern Beijing, China. Tectonophysics, 838, 229478.
DOI: 10.1016/j.tecto.2022.229478
Taylor, J.M., Teyssier, C., Whitney, D.L., *McFadden, R.R. and Barou, F., 2023, Linked microstructural and geochemical evolution of mylonitic quartzite during exhumation of a core complex. Journal of Structural Geology, 169, 104846.
DOI: 10.1016/j.jsg.2023.104846
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(9 Nov. 2023, 1578):
1. TAKAHASHI Keigo(B3: Dr. ASAMI in charge)
Sayani, H. R., Cobb, K. M., Monteleone, B., & Bridges, H., 2022, Accuracy and reproducibility of coral Sr/Ca SIMS timeseries in modern and fossil corals. Geochemistry, Geophysics, Geosystems, 23, e2021GC010068.
DOI: 10.1029/2021GC010068
2. OGITA Kosei(B3: Prof. IRYU in charge)
Bracchi, V.A., Purkis, S.J., Marchese, F. et al., 2023, Mesophotic foraminiferal-algal nodules play a role in the Red Sea carbonate budget. Commun Earth Environ 4, 288.
DOI: 10.1038/s43247-023-00944-w
3. NAGAFUCHI Haruya(M2)
中期~後期完新世の日本周辺の古環境研究
Garas, Kevin L., Watanabe, T., Yamazaki, A., 2023, Hydroclimate seasonality from paired coral Sr/Ca and δ18O records of Kikai Island, Southern Japan: Evidence of East Asian monsoon during mid-to late Holocene. Quaternary Science Reviews, 301, 107926
DOI: 10.1016/j.quascirev.2022.107926
Liangkang Pan, Jingyao Zhao, Yan Yang, Kexin Wang, Carlos Pérez-Mejías, Jiahui Cui, Xiyu Dong, Rui Zhang, Hai Cheng, 2023, Different responses of precipitation patterns to the East Asian summer monsoon weakening: The 7.2 and 8.2 ka events. Quaternary Science Reviews, 319, 108329
DOI: 10.1016/j.quascirev.2023.108329
4. YOKOYAMA Hiroaki(D2)
炭質物のラマンスペクトルに及ぼす変形の影響
Effects of Deformation on Raman Spectra of Carbonaceous Materials
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(26 Oct. 2023, 1577):
1. UMAKOSHI Hiroki (B3: Dr. MUTO in charge))
Xu, S., Fukuyama, E., Yamashita, F. et al., 2023, Fault strength and rupture process controlled by fault surface topography. Nat. Geosci. 16, 94–100.
DOI: 10.1038/s41561-022-01093-z
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(19 Oct. 2023, 1576):
1. KIMOTO Yuna(M2)
海洋熱量(OHC)に注目した水文条件と気候変動の復元
Reconstruction of hydrologic conditions and climate change focusing on ocean heat content (OHC)
Jian, Z., Wang, Y., Dang, H. H., Mohtadi, M., Y., Lea, D. W ., Liu, Z., Jin, H., Ye, L., Kuhnt, W. and Wa ng, X. 2022, Warm pool ocean heat content regulates ocean continent moisture transport. Nature 612 , 92 99
DOI: 10.1038/s41586-022-05302-y
Liu , S., Shi, X., Wang, K., Chen , M., Ye, W., Z han g, H., Cao, P., Li, J., Li, X., Khokiattiwong, S. and Kornkanitnan, N. N.., 2022, Synchronous millennial surface stratified events with AMOC and tropical dynamic changes in the northeastern Indian Ocean over the past 42 ka Quaternary Science Reviews, 284, 107495
DOI: 10.1016/j.quascirev.2022.107495
2. SUDA Makoto(M2)
対数混合則による線形粘弾性モデルの構成とその物理的解釈
Formulation of linear viscoelastic models via logarithmic mixing law and its physical interpretation.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(20 Jul. 2023, 1575):
1. TOJO Hiroto(B4: Dr. Iryu in charge)
Toth, L. T. and Aronson, R. B., 2019, The 4.2 ka event, ENSO, and coral reef development, Clim. Past, 15, 105–119.
2. MITO Yuga(M1)
海洋堆積物中の第四紀テフラの給源推定に関する研究
Study on source of Quaternary tephra in marine sediments
McCarthy, A., Yogodzinski, G., Tepley III, F. J., Bizimis, M., Arculus, R., & Ishizuka, O., 2019, Isotopic characteristics of Neogene‐Quaternary tephra from IODP Site U1438: A record of explosive volcanic activity in the Kyushu‐Ryukyu arc. Geochemistry, Geophysics, Geosystems, 20(5), 2318-2333.
DOI: 10.1029/2019GC008267
Corry-Saavedra, K., Schindlbeck, J. C., Straub, S. M., Murayama, M., Bolge, L. L., Gómez-Tuena, A., ... & Woodhead, J. D., 2019, The role of dispersed ash in orbital-scale time-series studies of explosive arc volcanism: insights from IODP Hole U1437B, Northwest Pacific Ocean. International Geology Review, 61(17), 2164-2183.
DOI: 10.1080/00206814.2019.1584770
3. TOMARU Taiga(M2)
白亜紀前期Aptianの国際標準年代に関する最新研究
The latest researches on Early Cretaceous Aptian geologic timescale
Charbonnier, G., Boulila, S., Spangenberg, J. E., Vermeulen, J., Galbrun, B., 2023, Astrochronology of the Aptian stage and evidence for the chaotic orbital motion of Mercury. Earth and Planetary Science Letters, 610, 118104.
DOI: 10.1016/j.epsl.2023.118104
Li, Y., Qin, H., Jicha, B. R., Huyskens, M. H., Wall, C. J., Trayler, R. B., ..., Zhu, R., 2023, Revised onset age of magnetochron M0r: Chronostratigraphic and geologic implications. Geology, 51(6), 565-570.
DOI: 10.1130/G50873.1
4. MINAMIDATE Kenta(D3)
気候変動によって台風活動はどう変わるか?
How does tropical cyclone activity change with climate change?
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(13 Jul. 2023, 1574):
1. TAKENAWA Tomohiro(B4: Dr. TAKAYANAGI in charge)
Davis, C.V., Sibert, E.C., Jacobs, P.H. et al., 2023, Intermediate water circulation drives distribution of Pliocene Oxygen Minimum Zones. Nat Commun 14, 40.
DOI: 10.1038/s41467-022-35083-x
2. NAKANO Sota(B4: Dr. ASAMI in charge)
Chen, M., Chia, H. K., Martin, P., Lee, J. N., Bettens, R. P., & Tanzil, J. T. (2022). A half-century record of coral skeletal P/Ca reveals late 20th century nutrient pollution in Port Dickson, Malaysia. Marine Pollution Bulletin, 181, 113875.
DOI: 10.1016/j.marpolbul.2022.113875
3. NAKAZAWA Tatsuki(B4: Dr. SUGAWARA in charge)
Carlton, J. T., Chapman, J. W., Geller, J. B., Miller, J. A., Carlton, D. A., McCuller, M. I., ... & Ruiz, G. M., 2017, Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography. Science, 357(6358), 1402-1406.
4. YOSHIBE Momo(M1)
中新世のサンゴ礁堆積物の堆積史に関する研究
Study on the depositional history of Miocene coral reef sediments
Yang Y., Kefu Yu, Wang R, Fan T, Jiang W, Xu S, Li Y., Zhao J., 2022, 87Sr/86Sr of coral reef carbonate strata as an indicator of global sea level fall: Evidence from a 928.75-mlong core in the South China Sea, Marine Geology, Volume 445, 106758
DOI: 10.1016/j.margeo.2022.106758
Irina A. Vishnevskaya, Marc Humblet, Yasufumi Iryu, Davide Bassi, Tatiana G. Okuneva, Daria V. Kiseleva, Andrey V. Vishnevskiy , Natalia G. Soloshenko, Pavel E. Mikhailik, 2022, Sr isotope variations in Oligocene‒Miocene and modern biogenic carbonate formations of Koko Guyot (Emperor Seamount Chain, Pacific Ocean), Marine Geology Volume 451, 106879
DOI: 10.1016/j.margeo.2022.106879
5. IIDA Masaki(M2)
粒子パラメータに着目した津波堆積物の識別手法
Identification method of tsunami deposits focusing on particle parameters
Ishimura. D., Ishizawa. T., Yamada. M. Aoki. K. and Sato. K., 2022, Washover deposits related to tsunami and storm surge along the north coast of the Shimokita Peninsula in northern Japan. Prog. Earth Planet. Sci., 69.
DOI: 10.1186/s40645-022-00529-9
Chmielowska, D., Woronko. B. and Dorocki. S., 2021, Applicability of automatic image analysis in quartz-grain shape discrimination for sedimentary setting reconstruction. Catena, 207.
DOI: 10.1016/j.catena.2021.105602
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(6 Jul. 2023, 1573):
1. SAITO Marin(B4: Dr. KUROYANAGI in charge)
Hoogakker, B.A.A., Anderson, C., Paoloni, T. et al., 2022, Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling. Nat Commun 13, 4841.
DOI: 10.1038/s41467-022-32480-0
2. OUCHI SAKURAKO(B4: Dr. SUZUKI in charge)
Feng, Y., Song, H., and Bond, D., 2020, Size variations in foraminifers from the early Permian to the Late Triassic: Implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions. Paleobiology, 46(4), 511-532.
DOI: 10.1017/pab.2020.37
3. MURAKAMI Issei(M2)
OAE2における⽣態系への環境ストレスとOAE2の進⾏過程
Gabriella D. Kitch, Andrew D. Jacobson, Bradley B. Sageman, Rodolfo Coccioni, Tia Chung-Swanson, Meagan E. Ankney, and Matthew T. Hurtgen, 2022, Calcium isotope ratios of malformed foraminifera reveal biocalcification stress preceded Oceanic Anoxic Event 2, Communications Earth & Environment, 3, 315.
DOI: 10.1038/s43247-022-00641-0
Gregory T. Connock, Jeremy D. Owens & Xiao-Lei Liu, 2022, Biotic induction and microbial ecological dynamics of Oceanic Anoxic Event 2, Communications Earth & Environment, 3, 136.
DOI: 10.1038/s43247-022-00466-x
3. HIRANO MITSUHIRO(D3)
Hello, optical lattice clock
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(22 Jun. 2023, 1572):
1. SATO Yuito(M1)
高解像度X 線CT 画像を用いたイベント砂層の粒子ファブリック測定とその活用
Sediment fabric measurement of event deposits using high-resolution X-ray CT images and its application.
M. Biguenet, E. Chaumillon, P. Sabatier, R. Paris, P. Vacher, N. Feuillet, 2022, Discriminating between tsunamis and tropical cyclones in the sedimentary record using Xray tomography, Marine Geology, 450, 106864.
DOI: 10.1016/j.margeo.2022.106864
R. Paris, S. Falvard, C. Chagué, J. Goff, S. Etienne, P. Doumalin, 2019, Sedimentary fabric characterized by X-ray tomography: A case-study from tsunami deposits on the Marquesas Islands, French Polynesia, Sedimentology, 67, 3, 1207-1229.
DOI: 10.1111/sed.12582
2. GOITSE MOSEKIEMANG(M2)
DIAGENETIC DOLOMITES AS CONSTRAINT TO THE DOLOMITE PROBLEM
Chang, B., Li, C., Liu, D., Foster, I., Tripati, A., Lloyd, M. K., ... and Immenhauser, A, 2020, Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proceedings of the National Academy of Sciences, 117(25), 14005-14014.
Miao, Z., Gong, E., Zhang, Y., Guan, C., and Huang, W., 2020, Burial dolomitization, the genesis of dolomite in the Dapu Formation (Upper Carboniferous), Guixinan area, Youjiang basin, Southwest China: petrologic and geochemical evidence. Carbonates and Evaporites, 35, 1-14.
DOI: 10.1007/s13146-020-00594-5
3. HOSOGAYA Kohei(D1)
オスミウム同位体比と海洋無酸素事変1bの解析
Ocean Anoxic Event 1b based on osmium isotope analysis
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(8 Jun. 2023, 1571):
1. TSUJIMOTO Daiki(B4: Dr. YAMADA in charge)
Christoph Spötl, Yuri Dublyansky, Gabriella Koltai, Hai Cheng, 2021, Hypogene speleogenesis and paragenesis in the Dolomites, Geomorphology Volume 382, 1 June 2021, 107667,
DOI: 10.1016/j.geomorph.2021.107667
2. TAKEDA Atae(B4: Dr. MUTO in charge)
Sunyoung Park, Jean-Philippe Avouac, Zhongwen Zhan and Adriano Gualandi, 2023, Weak upper-mantle base revealed by postseismic deformation of a deep earthquake, Nature, Vol 615, pp. 455−460
DOI: 10.1038/s41586-022-05689-8
3. MITO Yuga(M1)
カルデラの噴火年代や古カルデラ堆積物の起源についての最近の研究
Recent studies on the age of caldera eruptions and the origin of paleo-caldera deposits
Avellán, D. R., Macías, J. L., Layer, P. W., Sosa-Ceballos, G., Gómez-Vasconcelos, M. G., Cisneros-Máximo, G., ... and Benowitz, J., 2020, Eruptive chronology of the Acoculco caldera complex–A resurgent caldera in the eastern Trans-Mexican Volcanic Belt (México). Journal of South American Earth Sciences, 98, 102412.
DOI: 10.1016/j.jsames.2019.102412
Ocampo-Díaz, Y. Z. E., Sosa-Ceballos, G., Saucedo, R., Macías, J. L., Bolos, X., Radilla-Albarrán, U. A., ... and Cisneros-Maximo, G., 2021, Provenance and compositional variations of intra-caldera lake sediments at La Primavera, Jalisco, Western Mexico. Journal of South American Earth Sciences, 110, 103335.
DOI: 10.1016/j.jsames.2021.103335
4. HOSODA Akane(M2)
20 世紀以降の海洋の温暖化傾向
Warming trend of the oceans since the 20th century
Zhenhao Xu, Fei Ji, Bo Liu, Taichen Feng, Yuan Gao, Yongli He, Fei Chang, 2021, Long-term evolution of global sea surface temperature trend, Int. J. Climatol., 4437-4459.
DOI: 10.1002/joc.7082
Wenrong Bai, Hailong Liu, Pengfei Lin, Shijian Hu and Fan Wang, 2022, Indo-Pacific warm pool present warming attribution and future projection constraint, Environ. Res. Lett., 17 054026.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(1 Jun. 2023, 1570):
1. TOGASHI Kotomi(B4: Dr. SAWA in charge)
Hoover, W. F., Condit, C. B., Lindquist, P. C., Moser, A. C., and Guevara, V. E. (2022). Episodic slow slip hosted by talc-bearing metasomatic rocks: High strain rates and stress amplification in a chemically reacting shear zone. Geophysical Research Letters, 49, e2022GL101083.
DOI: 10.1029/2022GL101083
2. KAWASHIMA Hana(B4: Dr. TAKASHIMA in charge)
Hironao Matsumoto, Rodolfo Coccioni, Fabrizio Frontalini, Kotaro Shirai, Luigi Jovane, Ricardo Trindade, Jairo F. Savian, Maria Luisa G. Tejada, Silvia Gardin, Junichiro Kuroda; Long-term Aptian marine osmium isotopic record of Ontong Java Nui activity. Geology 2021;; 49 (9): 1148–1152.
DOI: 10.1130/G48863.1
3. KOMEIJI Kaito(M2)
視認困難な津波痕跡の検出における無機・有機地球化学の活⽤
Application of inorganic and organic geochemistry for detection of invisible tsunami traces
C. Chagué et al., 2020, A 7300 year record of environmental changes in a coastal wetland (Moawhitu), New Zealand, and evidence for catastrophic overwash (tsunami?). Sedimentary Geology, 407, 105746.
T. Shinozaki et al., 2022, Identifying tsunami trace beyond sandy tsunami deposits using terrigenous biomarkers: a case study of the 2011 Tohoku-oki tsunami in a coastal pine forest, northern Japan. Progress in Earth and Planetary Science, 9, 29.
DOI: 10.1186/s40645-022-00491-6
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(18 May 2023, 1569):
1. KAWATAKE Kazuho(B4: Dr. YAMADA in charge)
Munroe, J., Kimble, K., Spötl, C. et al., 2021, Cryogenic cave carbonate and implications for thawing permafrost at Winter Wonderland Cave, Utah, USA. Sci Rep. 11, 6430.
DOI: 10.1038/s41598-021-85658-9
2. MIURA Akito(B4: Dr. TAKASHIMA in charge)
Chen, H., Xu, Z., Bayon, G., Lim, D., Batenburg, S. J., Petrizzo, M. R., ... and Li, T., 2022, Enhanced hydrological cycle during Oceanic Anoxic Event 2 at southern high latitudes: New insights from IODP Site U1516. Global and Planetary Change, 209, 103735.
DOI: 10.1016/j.gloplacha.2022.103735
3. ODA Hiroto(M1)
海水温度計の作成に関わる問題の評価法と日本周辺の完新世気候変動研究の最近
Watanabe, Takaaki K., and Pfeiffer, M., 2022, A Simple Monte Carlo Approach to Estimate the Uncertainties of SST and δ18Osw Inferred From Coral Proxies. Geochem. Geophys. Geosyst., 23, e2021GC009813.
DOI: 10.1029/2021GC009813
Kajita, H., Isaji, Y., Kato, R., Nishikura, Y., Murayama, M., Ohkouchi, N.,...Kawahata, H., 2023, Climatic change around the 4.2 ka event in coastal areas of the East China Sea and its potential influence on prehistoric Japanese people. Palaeogeogr. Palaeoclimatol. Palaeoecol., 609, 111310.
DOI: 10.1016/j.palaeo.2022.111310
4. SEKIGUCHI Takuma(M2)
ダメージゾーンの岩石粉砕現象に伴うエネルギー消費について
Energy consumption associated with the seismological fracture in the damage zone of fault.
Aben, F. M., Brantut, N., and Mitchell, T. M., 2020, Off-fault damage characterization during and after experimental quasi-static and dynamic rupture in crustal rock from laboratory P wave tomography and microstructures. Journal of Geophysical Research: Solid Earth, 125(8).
DOI: 10.1029/2020JB019860
Johnson, S. E., Song, W. J., Vel, S. S., Song, B. R., and Gerbi, C. C. (2021). Energy partitioning, dynamic fragmentation, and off-fault damage in the earthquake source volume. Journal of Geophysical Research: Solid Earth, 126(11).
DOI: 10.1029/2021JB022616
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(27 Apr. 2023, 1568):
1. NISHIYOSHI Daigo(B4: Dr. KUROYANAGI in charge)
Morard, R., Hassenrück, C., Greco, M. et al., 2022, Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers. Nat Commun 13, 7135.
DOI: 10.1038/s41467-022-34794-5
2. HORIKAMI Syunnosuke(B4: Dr. SUGAWARA in charge)
Range, M. M., Arbic, B. K., Johnson, B. C., Moore, T. C., Titov, V., Adcroft, A. J., et al., 2022, The Chicxulub impact produced a powerful global tsunami. AGU Advances, 3, e2021AV000627.
DOI: 10.1029/2021AV000627
3. MASUDA Hidetoshi(M2)
古津波の数値モデリングに関する最近の進展
Recent progress in numerical modeling of paleotsunamis
Nakanishi, R. and Ashi, J., 2022, Sediment transport modeling based on geological data for Holocene coastal evolution: wave source estimation of sandy layers on the Coast of Hidaka, Hokkaido, Japan. Journal of Geophysical Research: Earth Surface, 127, e2022JF006721.
DOI: 10.1029/2022JF006721
Cifuentes-Lobos, R., Calisto, I., MacInnes, B. et al., 2023, A stochastic approach to the characterization of the seismic sources: a potential method for the assessment of sources of historical and paleo tsunami. Stoch Environ Res Risk Assess.
DOI: 10.1007/s00477-023-02397-1
4. MACHIDA Kazuki(D3)
中央海嶺と地熱地帯における地震の潮汐トリガーについての最近の分析
Recent analysis of tidal triggering of earthquakes on mid-ocean ridge and geothermal field
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
発表次第(20 Apr. 2023, 1567):
1. KOGI Keisuke(B4: Dr. SUZUKI in charge)
Li, Z., Zhang, Y.G., Torres, M. et al., 2023, Neogene burial of organic carbon in the global ocean. Nature 613, 90–95.
DOI: 10.1038/s41586-022-05413-6
2. YOSHIIKE Kanano (M1)
沿岸の侵食痕から過去の津波・ストーム 履歴を復元する
Sawai Y. Tamura T. Shimada Y. and Tanigawa K., 2023, Scour ponds from unusually large tsunamis on a beach ridge plain in eastern Hokkaido Japan. Sci Rep. 13 3064.
DOI: 10.1038/s41598-023-30061-9
Pitman, S. J., Jol, H. M., Shulmeister, J., and Hart, D. E., 2019, Storm response of a mixed sand gravel beach ridge plain under falling relative sea levels: A stratigraphic investigation using ground penetrating radar. Earth Surf. Process. Landforms, 44: 1610– 1617.
DOI: 10.1002/esp.4598
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––